搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子辐射导致的SiC功率器件漏电增加特性研究

彭超 雷志锋 张战刚 何玉娟 马腾 蔡宗棋 陈义强

引用本文:
Citation:

中子辐射导致的SiC功率器件漏电增加特性研究

彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强

Study on characteristics of neutron-induced leakage current increase for SiC power devices

Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang
PDF
HTML
导出引用
  • 基于14 MeV中子辐照研究了碳化硅(silicon carbide, SiC)肖特基势垒二极管(Schottky barrier diode, SBD)和金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor, MOSFET)器件的位移损伤退化特性. 结果表明: 总注量为1.18×1011 cm–2的中子辐照不会引起SBD正向I-V特性的明显退化, 但会导致反向漏电流出现显著增大. 通过深能级瞬态谱测试发现中子辐照在SiC中引入的缺陷簇形成了能级位置EC-1.034 eV处的缺陷. 该深能级缺陷可能导致SiC漂移层费米能级向禁带中央移动, 引起了肖特基势垒的降低, 最终导致反向漏电流的增大. 此外, 中子辐照也会导致SiC MOSFET栅漏电增大. 对应栅电压Vgs = 15 V时, 辐照后器件栅电流比辐照前增大了近3.3倍. 中子辐照在氧化层中引入的施主型缺陷导致辐照前后MOSFET器件的栅氧导电机制发生了变化. 缺陷对载流子越过栅氧化层势垒有辅助作用, 从而导致栅漏电的增加. 深能级瞬态谱测试结果表明中子辐照还会导致MOSFET器件沟道附近SiC材料中本征缺陷状态的改变, 同时形成了新的Si空位缺陷能级, 但这些缺陷不是导致器件性能退化的主要原因.
    In this paper, the displacement damage degradation characteristics of silicon carbide (SiC) Schottky barrier diode (SBD) and metal oxide semiconductor field effect transistor (MOSFET) are studied under 14-MeV neutron irradiation. The experimental results show that the neutron irradiation with a total fluence of 1.18×1011 cm–2 will not cause notable degradation of the forward I-V characteristics of the diode, but will lead to a significant increase in the reverse leakage current. A defect with energy level position of $ E_{\rm{C}} - 1.034 $ eV is observed after irradiation by deep level transient spectroscopy (DLTS) testing, which is corresponding to the neutron-induced defect cluster in SiC. This deep level defect may cause the Fermi level of n-type doping drift region to move toward the mid-gap level. It ultimately results in the decrease of the Schottky barrier and the increase of the reverse leakage current. In addition, neutron-induced gate leakage increase is also observed for SiC MOSFET. The gate current corresponding to Vgs = 15 V after irradiation increases nearly 3.3 times that before irradiation. The donor-type defects introduced by neutron irradiation in the oxide layer result in the difference in the conductivity mechanism of gate oxygen between before and after irradiation. The defects have an auxiliary effect on carrier crossing the gate oxide barrier, which leads to the increase of gate leakage current. The defects introduced by neutron irradiation are neutral after capturing electrons. The trapped electrons can cross a lower potential well and enter the conduction band to participate in conduction when the gate is positively biased, thus causing the gate current to increase with the electric field increasing. After electrons captured by donor-type defects enter the conduction band, positively charged defects are left from the gate oxide, leading to the negative shift of the transfer characteristics of SiC MOSFET. The results of DLTS testing indicate that the neutron irradiation can not only cause the intrinsic defect state of SiC material to change near the channel of MOSFET, but also give rise to new silicon vacancy defects. However, these defects are not the main cause of device performance degradation due to their low density relative to the intrinsic defect’s.
      通信作者: 彭超, pengchaoceprei@qq.com ; 陈义强, yiqiang-chen@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 12075065, 62274043)、广东省基础与应用基础研究基金(批准号: 2021B1515120043)、广东省重点研发计划(批准号: 2022B0701180002)和广州市科技计划(批准号: 202201010868)资助的课题.
      Corresponding author: Peng Chao, pengchaoceprei@qq.com ; Chen Yi-Qiang, yiqiang-chen@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075065, 62274043), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2021B1515120043), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2022B0701180002), and the Science and Technology Program of Guangzhou, China (Grant No. 202201010868).
    [1]

    Casady J B, Johnson R W 1996 Solid State Electron. 39 1409Google Scholar

    [2]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Singapore: John Wiley & Sons) p16

    [3]

    张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 056106Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 056106Google Scholar

    [4]

    张鸿, 郭红霞, 潘霄宇, 雷志锋, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平 2021 物理学报 70 162401Google Scholar

    Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Gu Z Q, Liu Y T, Ju A A, Ouyang X P 2021 Acta Phys. Sin. 70 162401Google Scholar

    [5]

    Yu C H, Wang Y, Bao M T, Li X J, Yang J Q, Tang Z H 2021 IEEE Trans. Electron Dev. 68 5034Google Scholar

    [6]

    Yu C H, Wang Y, Li X J, Liu C M, Luo X, Cao F 2018 IEEE Trans. Electron Dev. 65 5434Google Scholar

    [7]

    McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W, Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474Google Scholar

    [8]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [9]

    彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云 2022 物理学报 71 176101Google Scholar

    Peng C, Lei Z F, Zhang Z G, He Y J, Chen Y Q, Lu G G, Huang Y 2022 Acta Phys. Sin. 71 176101Google Scholar

    [10]

    Steffens M, Höffgen S K, Poizat M 2017 17th European Conference on Radiation and its Effects on Components and Systems ( RADECS) Geneva, Switzerland, October 2–6, 2017 p1

    [11]

    Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258Google Scholar

    [12]

    Zhang C X, Zhang E X, Fleetwood D M, Schrimpf R D, Dhar S, Ryu S H, Shen X, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2925Google Scholar

    [13]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instr. Meth. Phys. Res. B 327 124Google Scholar

    [14]

    Omotoso E, Meyer W E, Auret F D, Paradzah A T, Legodi M J 2016 Nucl. Instr. Meth. Phys. Res. B 371 312Google Scholar

    [15]

    Yang J, Li H, Dong S, Li X 2019 IEEE Trans Nucl. Sci. 66 2042Google Scholar

    [16]

    Chao D S, Shih H Y, Jiang J Y, et al 2019 Jap. J. Appl. Phys. 58 SBBD08Google Scholar

    [17]

    Agostinelli S, Allison J, Amako K, et al 2003 Nucl. Instr. Meth. Phys. Res. A 506 250Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    巴利加 著 (韩郑生 等 译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第99—101页

    Baliga B J (translated by Han Z S, et al) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp99–101

    [20]

    Castaldini A, Cavallini A, Polenta L, Nava F, Canali C, Lanzieri C 2002 Appl. Surf. Sci. 187 248Google Scholar

    [21]

    Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke W J, Schoner A, Nordell N 1997 Phys. Stat. Sol. (a) 162 199Google Scholar

    [22]

    Alfieri G, Mihaila A, Nipoti R, Puzzanghera M, Sozzi G, Godignon P, Millán J 2017 Materials Science Forum 897 246Google Scholar

    [23]

    Alfieri G, Monakhov E V, Svensson B G, Hallén A 2005 J. Appl. Phys. 98 113524Google Scholar

    [24]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (西安: 西安交通大学出版社) 第173—176页

    Sze S M, Ng K K (translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (Xi’an: Xi’an Jiaotong University Press) pp173–176

  • 图 1  试验用SiC结势垒肖特基二极管器件 (a)表面形貌的光学显微镜图; (b)截面示意图

    Fig. 1.  SiC JBS diode used in our experiment: (a) Optical microscope diagram of surface morphology; (b) diagram of cross-section.

    图 2  试验用SiC MOSFET器件 (a)表面形貌的光学显微镜图; (b)截面示意图

    Fig. 2.  SiC MOSFET used in our experiment: (a) Optical microscope diagram of surface morphology; (b) diagram of cross-section.

    图 3  额定电压为650 V的二极管辐照前后正向(a)和反向(b) I-V特性

    Fig. 3.  Forward (a) and reverse (b) I-V characteristics of 650 V SiC diode before and after irradiation.

    图 5  额定电压为1700 V的二极管辐照前后正向(a)和反向(b)I-V特性

    Fig. 5.  Forward (a) and reverse (b) I-V characteristics of 1700 V SiC diode before and after irradiation.

    图 4  额定电压为1200 V的二极管辐照前后正向(a)和反向(b) I-V特性

    Fig. 4.  Forward (a) and reverse (b) I-V characteristics of 1200 V SiC diode before and after irradiation.

    图 6  (a)额定电压为1700 V的二极管辐照前后的深能级瞬态谱特性, 其中内嵌图为温度300—400 K之间曲线的放大图; (b)阿伦尼乌斯曲线

    Fig. 6.  (a) DLTS spectra of 1700 V SiC diode before and after irradiation, the inset graph is the enlarged curve between 300–400 K; (b) Arrhenius plot.

    图 7  DLTS测试过程中SiC二极管的能带示意图(EV为价带能级) (a)辐照前; (b)辐照后.

    Fig. 7.  Schematic diagram of the energy band of SiC diode during DLTS testing process: (a) Pre-irradiation; (b) after-irradiation.

    图 8  (a) SiC MOSFET器件辐照前后的转移特性和栅电流特性, 测试条件为源端电压Vs = 0 V, 漏端电压Vd = 0.1 V; (b)辐照后SiC MOSFET器件栅电流拟合, 测试条件Vd = Vs = 0 V

    Fig. 8.  (a) Transfer and gate-current characteristics of SiC MOSFET before and after irradiation (test condition, Vs = 0 V, Vd = 0.1 V); (b) gate current fitting of SiC MOSFET after irradiation (test condition Vd = Vs = 0 V).

    图 9  (a)辐照前未加栅偏压下的SiC MOSFET器件能带图; (b)辐照后未加栅偏压下的SiC MOSFET器件能带图; (c)辐照后加正栅偏压下的SiC MOSFET器件能带图

    Fig. 9.  (a) Energy band diagram of SiC MOSFET without gate bias before irradiation; (b) energy band diagram of SiC MOSFET without gate bias after irradiation; (c) energy band diagram of SiC MOSFET with positive gate bias after irradiation.

    图 10  (a)辐照前后SiC功率MOSFET器件的深能级瞬态谱; (b)阿伦尼乌斯曲线

    Fig. 10.  (a) DLTS spectrums of SiC MOSFET before and after irradiation; (b) Arrhenius plot.

    表 1  根据I-V特性提取的二极管肖特基势垒高度

    Table 1.  Schottky barrier height of SiC diodes extracted by I-V characteristics.

    器件 650 V器件 1200 V器件 1700 V器件
    辐照前 辐照后 辐照前 辐照后 辐照前 辐照后
    肖特基势垒 ΦB0/eV 1.224 1.214 1.220 1.209 1.203 1.194
    理想因子 n 1.02 1.03 1.02 1.03 1.02 1.03
    下载: 导出CSV

    表 2  基于深能级瞬态谱提取的SiC二极管辐照前后的缺陷信息

    Table 2.  Trap information of SiC diode extracted by DLTS before and after irradiation.

    缺陷类型
    缺陷DT1 缺陷DT2
    能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2 能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2
    辐照前 0.071 8.60×1013 2.55×10–23 0.864 3.29×1012 2.19×10–15
    辐照后 0.052 8.09×1013 3.21×10–23 1.034 3.47×1012 8.34×10–13
    下载: 导出CSV

    表 3  基于深能级瞬态谱提取的SiC MOSFET辐照前后的缺陷信息

    Table 3.  Trap information of SiC MOSFET extracted by DLTS before and after irradiation.

    缺陷类型
    缺陷MT1 缺陷MT2
    能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2 能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2
    辐照前 1.112 1.42×1014 8.60×10–9
    辐照后 0.980 1.59×1014 2.82×10–10 0.376 1.34×1013 6.31×10–17
    下载: 导出CSV
  • [1]

    Casady J B, Johnson R W 1996 Solid State Electron. 39 1409Google Scholar

    [2]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Singapore: John Wiley & Sons) p16

    [3]

    张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 056106Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 056106Google Scholar

    [4]

    张鸿, 郭红霞, 潘霄宇, 雷志锋, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平 2021 物理学报 70 162401Google Scholar

    Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Gu Z Q, Liu Y T, Ju A A, Ouyang X P 2021 Acta Phys. Sin. 70 162401Google Scholar

    [5]

    Yu C H, Wang Y, Bao M T, Li X J, Yang J Q, Tang Z H 2021 IEEE Trans. Electron Dev. 68 5034Google Scholar

    [6]

    Yu C H, Wang Y, Li X J, Liu C M, Luo X, Cao F 2018 IEEE Trans. Electron Dev. 65 5434Google Scholar

    [7]

    McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W, Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474Google Scholar

    [8]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [9]

    彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云 2022 物理学报 71 176101Google Scholar

    Peng C, Lei Z F, Zhang Z G, He Y J, Chen Y Q, Lu G G, Huang Y 2022 Acta Phys. Sin. 71 176101Google Scholar

    [10]

    Steffens M, Höffgen S K, Poizat M 2017 17th European Conference on Radiation and its Effects on Components and Systems ( RADECS) Geneva, Switzerland, October 2–6, 2017 p1

    [11]

    Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258Google Scholar

    [12]

    Zhang C X, Zhang E X, Fleetwood D M, Schrimpf R D, Dhar S, Ryu S H, Shen X, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2925Google Scholar

    [13]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instr. Meth. Phys. Res. B 327 124Google Scholar

    [14]

    Omotoso E, Meyer W E, Auret F D, Paradzah A T, Legodi M J 2016 Nucl. Instr. Meth. Phys. Res. B 371 312Google Scholar

    [15]

    Yang J, Li H, Dong S, Li X 2019 IEEE Trans Nucl. Sci. 66 2042Google Scholar

    [16]

    Chao D S, Shih H Y, Jiang J Y, et al 2019 Jap. J. Appl. Phys. 58 SBBD08Google Scholar

    [17]

    Agostinelli S, Allison J, Amako K, et al 2003 Nucl. Instr. Meth. Phys. Res. A 506 250Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    巴利加 著 (韩郑生 等 译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第99—101页

    Baliga B J (translated by Han Z S, et al) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp99–101

    [20]

    Castaldini A, Cavallini A, Polenta L, Nava F, Canali C, Lanzieri C 2002 Appl. Surf. Sci. 187 248Google Scholar

    [21]

    Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke W J, Schoner A, Nordell N 1997 Phys. Stat. Sol. (a) 162 199Google Scholar

    [22]

    Alfieri G, Mihaila A, Nipoti R, Puzzanghera M, Sozzi G, Godignon P, Millán J 2017 Materials Science Forum 897 246Google Scholar

    [23]

    Alfieri G, Monakhov E V, Svensson B G, Hallén A 2005 J. Appl. Phys. 98 113524Google Scholar

    [24]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (西安: 西安交通大学出版社) 第173—176页

    Sze S M, Ng K K (translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (Xi’an: Xi’an Jiaotong University Press) pp173–176

  • [1] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [2] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [6] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [7] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [8] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [9] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [11] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [12] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [13] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [14] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [15] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [16] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [17] 郑旭, 黎兵, 王钊, 张东廷, 冯良桓, 张静全, 蔡亚平, 郑家贵, 武莉莉, 李卫, 雷智, 曾广根. CdTe太阳电池中起因于Cu的深能级. 物理学报, 2010, 59(4): 2783-2788. doi: 10.7498/aps.59.2783
    [18] 黎兵, 刘才, 冯良桓, 张静全, 郑家贵, 蔡亚平, 蔡伟, 武莉莉, 李卫, 雷智, 曾广根, 夏庚培. CdS/CdTe薄膜太阳电池的深能级瞬态谱和光致发光研究. 物理学报, 2009, 58(3): 1987-1991. doi: 10.7498/aps.58.1987
    [19] 李养贤, 刘何燕, 牛萍娟, 刘彩池, 徐岳生, 杨德仁, 阙端鳞. 中子辐照直拉硅中的本征吸除效应. 物理学报, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
    [20] 杜永昌, 张玉峰, 秦国刚, 孟祥提. 中子辐照含氢硅中的与氢有关的深能级缺陷. 物理学报, 1984, 33(4): 477-485. doi: 10.7498/aps.33.477
计量
  • 文章访问数:  1864
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-07-03
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回