Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature

Han An-Jun Sun Yun Li Zhi-Guo Li Bo-Yan He Jing-Jing Zhang Yi Liu Wei

Citation:

The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature

Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the presence of Se, Cu(In0.7Ga0.3)Se2 (CIGS) thin films are prepared by the sequential evaporation of Ga, In, Cu at a constant substrate temperature between 250 ℃ and 550 ℃ on the Mo/soda lime glass substrates. The thickness values of films are about 0.7 μm. The structural and phase properties of CIGS films are studied by an X-ray diffractometer, the morphology and crystalline quality are characterized by a scanning electron microscope, the depth profiles of elements are measured by a secondary ion mass spectroscopy, the surface compositions are analyzed by a Raman spectrometer, and the optical properties of CIGS films are measured by a spectrophotometer with an integrating sphere. It is found that the films prepared at substrate temperature above 450 ℃ each exhibite a single Cu(In0.7Ga0.3)Se2 phase, and the homogenization of Ga/(Ga+In) distribution in the Ga-In-Se precursor is achieved by the diffusion of In atoms through grain boundaries. As the substrate temperature is less than 400 ℃, a serious Ga phase separation is observed and the high content of Ga phase mainly exists at the top and bottom of CIGS films. Below 300 ℃, a serious deterioration of crystalline quality is found, and Ga atoms cannot effectively enter into the CIS lattice position to form CIGS. The films prepared at the substrate temperature less than 400 ℃ are covered with lots of Cu(In0.5Ga0.5)Se2 small grains, which results in the enhancement of the surface roughness and the formation of a light trapping structure at the interface of Cd/CIGS. Thus, the light absorption of solar cell is improved. In addition, the smaller gap value of the low Ga content phase also facilitats the light absorption, then the short-circuit current density of thinned solar cell is greatly improved. The analysis shows that the short-circuit current density is the main factor affecting the conversion efficiency of thinned solar cell prepared between 550 ℃-350 ℃. However, when the substrate temperature is below 350 ℃, the reduction of VOC and FF has become the main reason for the deterioration of solar cell. In conclusion, the efficiency of solar cell with 0.7 μm CIGS absorber prepared at substrate temperature of 350 ℃ reaches 10.3% due to the improvement of short-circuit current density.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2004AA513020), the National Natural Science Foundation of China (Grant Nos. 60906033, 50902074, 90922037, 61076061), and the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC01200).
    [1]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt: Res. Appl. 19 894

    [2]

    Han S H, Hermann A M, Hasoon F S, Al-Thani H A, Levi D H 2004 Appl. Phys. Lett. 85 576

    [3]

    Powalla M, Dimmler B 2000 Thin Solid Films 361-362 540

    [4]

    Han A J, Zhang Y, Song W, Li B Y, Liu W, Sun Y 2012 Semicond. Sci. Technol. 27 035022

    [5]

    Gloeckler M, Sites J R 2005 J. Appl. Phys. 98 103703

    [6]

    Edoff M, Schleussner S, Wallin E, Lundberg O 2011 Thin Solid Films 519 7530

    [7]

    Zhang L, Liu F F, Li F Y, He Q, Li B Z, Li C J 2012 Sol. Energy Mater. Sol. Cells 99 356

    [8]

    Caballero R, Kaufmann C A, Eisenbarth T, Cancela M, Hesse R, Unold T, Eicke A, Klenk R, Schock H W 2009 Thin Solid Films 517 2187

    [9]

    Zhang L, He Q, Jiang W L, Li C J, Sun Y 2008 Chin. Phys. Lett. 25 734

    [10]

    Schöldström J, Kessler J, Edoff M 2005 Thin Solid Films 480-481 61

    [11]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙 云2009物理学报 58 1870]

    [12]

    Djessas K, Yapi S, Massé G, Ibannain M, Gauffier J L 2004 J. Appl. Phys. 95 4111

    [13]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Sol. Energy Mater. Sol. Cells 41/42 247

    [14]

    Schleussner S M, Törndah T, Linnarsson M, Zimmermann U, Wätjen T, Edoff M 2012 Prog. Photovolt: Res. Appl. 20 284

    [15]

    Otte K, Lippold G, Hirsch D, Schindler A, Bigl F 2000 Thin Solid Films 361-362 498

    [16]

    Roy S, Guha P, Kundu S N, Hanzawa H, Chaudhuri S, Pal A K 2002 Mater. Chem. Phys. 73 24

    [17]

    Zhang Y W, Bi D W, Gong X N, Bian H, Wan L, Tang D S 2011 Sci. China: Phys. Mech. Astron. 41 845 (in Chinese) [张有为, 毕大炜, 公祥南, 边惠, 万里, 唐东升 2011中国科学: 物理学 力学 天文学 41 845]

    [18]

    Han A J, Zhang Y, Li B Y, Liu W, Sun Y 2012 Appl. Surf. Sci. 258 9747

    [19]

    Li W, Sun Y, Liu W, Li F Y, Zhou L 2006 Chin. Phys. 15 878

    [20]

    Han A J, Zhang J J, Li L N, Zhang H, Liu C C, Geng X H, Zhao Y 2011 Acta Energiae Sol. Sin. 5 698 (in Chinese) [韩安军, 张建军, 李林娜, 张洪, 刘彩池, 耿新华, 赵颖 2011太阳能学报 5 698]

  • [1]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt: Res. Appl. 19 894

    [2]

    Han S H, Hermann A M, Hasoon F S, Al-Thani H A, Levi D H 2004 Appl. Phys. Lett. 85 576

    [3]

    Powalla M, Dimmler B 2000 Thin Solid Films 361-362 540

    [4]

    Han A J, Zhang Y, Song W, Li B Y, Liu W, Sun Y 2012 Semicond. Sci. Technol. 27 035022

    [5]

    Gloeckler M, Sites J R 2005 J. Appl. Phys. 98 103703

    [6]

    Edoff M, Schleussner S, Wallin E, Lundberg O 2011 Thin Solid Films 519 7530

    [7]

    Zhang L, Liu F F, Li F Y, He Q, Li B Z, Li C J 2012 Sol. Energy Mater. Sol. Cells 99 356

    [8]

    Caballero R, Kaufmann C A, Eisenbarth T, Cancela M, Hesse R, Unold T, Eicke A, Klenk R, Schock H W 2009 Thin Solid Films 517 2187

    [9]

    Zhang L, He Q, Jiang W L, Li C J, Sun Y 2008 Chin. Phys. Lett. 25 734

    [10]

    Schöldström J, Kessler J, Edoff M 2005 Thin Solid Films 480-481 61

    [11]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙 云2009物理学报 58 1870]

    [12]

    Djessas K, Yapi S, Massé G, Ibannain M, Gauffier J L 2004 J. Appl. Phys. 95 4111

    [13]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Sol. Energy Mater. Sol. Cells 41/42 247

    [14]

    Schleussner S M, Törndah T, Linnarsson M, Zimmermann U, Wätjen T, Edoff M 2012 Prog. Photovolt: Res. Appl. 20 284

    [15]

    Otte K, Lippold G, Hirsch D, Schindler A, Bigl F 2000 Thin Solid Films 361-362 498

    [16]

    Roy S, Guha P, Kundu S N, Hanzawa H, Chaudhuri S, Pal A K 2002 Mater. Chem. Phys. 73 24

    [17]

    Zhang Y W, Bi D W, Gong X N, Bian H, Wan L, Tang D S 2011 Sci. China: Phys. Mech. Astron. 41 845 (in Chinese) [张有为, 毕大炜, 公祥南, 边惠, 万里, 唐东升 2011中国科学: 物理学 力学 天文学 41 845]

    [18]

    Han A J, Zhang Y, Li B Y, Liu W, Sun Y 2012 Appl. Surf. Sci. 258 9747

    [19]

    Li W, Sun Y, Liu W, Li F Y, Zhou L 2006 Chin. Phys. 15 878

    [20]

    Han A J, Zhang J J, Li L N, Zhang H, Liu C C, Geng X H, Zhao Y 2011 Acta Energiae Sol. Sin. 5 698 (in Chinese) [韩安军, 张建军, 李林娜, 张洪, 刘彩池, 耿新华, 赵颖 2011太阳能学报 5 698]

  • [1] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [3] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [4] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [5] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [6] Bai Li-Sha, Li Tian-Tian, Liu Bo-Fei, Huang Qian, Li Bao-Zhang, Zhang De-Kun, Sun Jian, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan. Ultra-thin film microcrystalline silicon with high deposition rate and its application in tandem silicon solar cells. Acta Physica Sinica, 2015, 64(22): 228801. doi: 10.7498/aps.64.228801
    [7] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [8] Zhang Chi, Chen Xin-Liang, Wang Fei, Yan Cong-Bo, Huang Qian, Zhao Ying, Zhang Xiao-Dan, Geng Xin-Hua. Temperature-dependant growth and properties of W-doped ZnO thin films deposited by reactive magnetron sputtering. Acta Physica Sinica, 2012, 61(23): 238101. doi: 10.7498/aps.61.238101
    [9] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [10] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [11] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [12] Yu Huang-Zhong, Peng Jun-Biao, Liu Jin-Cheng. The performance of solar cell based on the blend of MEH-PPV∶TiO2. Acta Physica Sinica, 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [13] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [14] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [15] Yang Shi-E, Wen Li-Wei, Chen Yong-Sheng, Wang Chang-Zhou, Gu Jin-Hua, Gao Xiao-Yong, Lu Jing-Xiao. Substrate temperature and B-doping effects on microstructure and electronic properties of p-type hydrogenated microcrystalline silicon films. Acta Physica Sinica, 2008, 57(8): 5176-5181. doi: 10.7498/aps.57.5176
    [16] Wu Xiao-Li, Chen Chang-Le, Han Li-An, Luo Bing-Cheng, Gao Guo-Mian, Zhu Jian-Hua. Influence of substrate temperature on the structure and photoluminescence of Mg0.05Zn0.95O thin films grown by pulsed laser deposition. Acta Physica Sinica, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [17] Li Wei, Ao Jian-Ping, He Qing, Liu Fang-Fang, Li Feng-Yan, Li Chang-Jian, Sun Yun. The influence of substrate on texture of Cu(In,Ga)Se2 film. Acta Physica Sinica, 2007, 56(8): 5009-5012. doi: 10.7498/aps.56.5009
    [18] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
Metrics
  • Abstract views:  5493
  • PDF Downloads:  699
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2012
  • Accepted Date:  25 September 2012
  • Published Online:  05 February 2013

/

返回文章
返回