Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of Cu2O/ZnO oxide heterojunction solar cells

Chen Xin-Liang Chen Li Zhou Zhong-Xin Zhao Ying Zhang Xiao-Dan

Progress of Cu2O/ZnO oxide heterojunction solar cells

Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan
PDF
Get Citation
  • Recent progress of low cost Cu2O/ZnO hetero-junction solar cells is reviewed in this paper. The Cu2O used as an absorbing layer in photovoltaic cells is a direct bandgap semiconductor, exhibiting natural p-type conductivity. The source material of Cu2O-based solar cells is abundant and environmentally friendly. The main device structure of Cu2O/ZnO solar cells presents a planar and nano-wire/nano-rod configuration. The nanostructured Cu2O architecture conduces to charge collection in the device. The planar Cu2O absorbing layer with large grain size, achieved through the thermal oxidation of Cu sheets, exhibits high quality of the Cu2O/ZnO solar cells. The interface buffer layer (like i-ZnO, a-ZTO and Ga2O3) and back surface field (BSF, such as p+-Cu2O) can effectively improve energy band alignment match and increase carrier transport. The Cu2O paired with a 10-nm-thick Ga2O3 layer provides a nearly ideal conduction band offset and thus reduces the interface recombination. The Ga2O3 is a highly suitable buffer layer for enhancing the Voc (Voc value reaches 1.2 V) and conversion efficiency of Cu2O-based solar cells. The p+-Cu2O like N-doped Cu2O (Cu2O:N) and Na-doped Cu2O (Cu2O:Na) can reduce back-contact resistance and create an electron-reflecting back surface field in the Cu2O based solar cells. When a p-type Cu2O: Na acts as an absorbing layer and a zinc-germanium-oxide (Zn1-xGex-O) thin film is used as an n-type layer (buffer), Cu2O hetero-junction solar cell with the device structure MgF2/Al-doped ZnO (ZnO:Al)/Zn0.38Ge0.62-O/Cu2O:Na shows an efficiency of 8.1%. The oxide hetero-junction solar cells have a great potential application in the future photovoltaic field.
      Corresponding author: Chen Xin-Liang, cxlruzhou@163.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707) and the Key Program of Tianjin Natural Science Foundation, China (Grant No. 13JCZDJC26900).
    [1]

    Zhao J, Wang A, Green M A 1999 Prog. Photovolt.: Res. Appl. 7 471

    [2]

    Nelson J (translated by Gao Y) 2011 The Physics of Solar Cells (Shanghai: Shanghai Jiaotong University Press) pp148-206 (in Chinese) [纳尔逊J 著(高扬 译) 2011 太阳能电池物理 (上海: 上海交通大学出版社) 第148206页]

    [3]

    Green M A 2002 Physica E 14 65

    [4]

    Shah A 2004 Prog. Photovolt.: Res. Appl. 12 113

    [5]

    Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [6]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt.: Res. Appl. 19 894

    [7]

    Wu X 2004 Sol. Energy 77 803

    [8]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Goutam Paul K, Sakurai T 2006 Sol. Energy 80 715

    [9]

    Henry C H 1980 J. Appl. Phys. 51 4494

    [10]

    Xie J, Guo C, Li C 2013 Phys. Chem. Chem. Phys. 15 15905

    [11]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsieh J H, Chen I C 2007 Scripta Mater. 57 53

    [12]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [13]

    Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R 2006 Appl. Phys. Lett. 88 163502

    [14]

    Minami T, Nishi Y, Miyata T, Nomoto J 2011 Appl. Phys. Express 4 062301

    [15]

    Ishizuka S, Suzuki K, Okamoto Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K, Niki S 2004 Phys. Status Solidi C 1 1067

    [16]

    Lv P, Zheng W, Lin L, Peng F, Huang Z, Lai F 2011 Physica B 406 1253

    [17]

    Terence K S W, Siarhei Z, Saeid M P, Goutam K D 2016 Materials 9 271

    [18]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. B 76 045209

    [19]

    Papadimitriou L, Economou N A, Trivich D 1981 Sol. Cells 3 73

    [20]

    Ishizuka S, Kato S, Okamoto Y, Akimoto K 2002 Appl. Phys. Lett. 80 950

    [21]

    Ishizuka S, Akimoto K 2004 Appl. Phys. Lett. 85 4920

    [22]

    Kikuchi N, Tonooka K 2005 Thin Solid Films 486 33

    [23]

    Ishizuka S, Kato S, Maruyama T, Akimoto T 2001 Jpn. Appl. Phys. 40 2765

    [24]

    Malerba C, Ricardo C L A, DIncau M, Biccari F, Scardi P, Mittiga A 2012 Sol. Energy Mater. Sol. Cells 105 192

    [25]

    Huang Q, Wang L, Bi X 2013 J. Phys. D: Appl. Phys. 46 505101

    [26]

    Pu C Y, Li H J, Tang X, Zhang Q Y 2012 Acta Phys. Sin. 61 047104(in Chinese) [濮春英, 李洪婧, 唐鑫, 张庆瑜 2012 物理学报 61 047104]

    [27]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [28]

    Fay S, Feitknecht L, Schluchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [29]

    Chen L 2017 M. S. Dissertation (Tianjin: Nankai University) (in Chinese) [陈莉 2017 硕士学位论文 (天津: 南开大学)]

    [30]

    Luo Y P 2012 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [罗业萍 2012 硕士学位论文 (杭州: 浙江大学)]

    [31]

    Hame Y, San S E 2004 Sol. Energy 77 291

    [32]

    Han K, Tao M 2009 Sol. Energy Mater. Sol. Cells 93 153

    [33]

    Li S S 2015 M. S. Dissertation (Chengdu: Xinan Jiaotong University) (in Chinese) [李思思 2015 硕士学位论文 (成都: 西南交通大学)]

    [34]

    McShane C M, Siripala W P, Choi K S 2010 J. Phys. Chem. Lett. 1 2666

    [35]

    Olsen L C, Bohara R C, Urie M W 1979 Appl. Phys. Lett. 34 47

    [36]

    Fujimoto K, Oku T, Akiyama T, Suzuki A 2013 J. Phys.: Conf. Ser. 433 012024

    [37]

    Izaki M, Shinagawa T, Mizuno K T, Ida Y, Inaba M, Tasaka A 2007 J. Phys. D 40 3326

    [38]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [39]

    Wilson S S, Bosco J P, Tolstova Y, Scanlon D O, Watson G W, Atwater H A 2014 Energy Environ. Sci. 7 3606

    [40]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K, Sakurai T 2006 Sol. Energy 80 715

    [41]

    Nishi Y, Miyata T, Minami T 2013 Thin Solid Films 528 72

    [42]

    Minami T, Nishi Y, Miyata T 2013 Appl. Phys. Express 6 044101

    [43]

    Minami T, Nishi Y, Miyata T 2015 Appl. Phys. Express 8 022301

    [44]

    Minami T, Nishi Y, Miyata T 2016 Appl. Phys. Express 9 052301

    [45]

    Lee Y S, Heo J, Siah C S, Mailoa J P, Brandt R E, Kim S B, Lee S W, Gordon R G, Buonassisi T 2013 Energy Environ. Sci. 6 2112

    [46]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [47]

    Lee Y S, Heo J, Winkler M T, Siah S C, Kim S B, Gordon R G, Buonassisi T 2013 J. Mater. Chem. A 1 15416

    [48]

    Marin A T, Rojas D M, Iza D C, Gershon T, Musselman K P, MacManus-Driscoll J L 2013 Adv. Funct. Mater. 23 3413

    [49]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsiehc J H, Chen I C 2007 Scripta Mater. 57 53

    [50]

    Chen J W, Perng D C, Fang J F 2011 Sol. Energy Mater. Sol. Cells 95 2471

    [51]

    Musselman K P, Wisnet A, Iza D C, Hesse H C, Scheu C, MacManus-Driscoll J L, Schmidt-Mende L 2010 Adv. Mater. 22 E254

    [52]

    Musselman K P, Marin A, Schmidt-Mende L, MacManus-Driscoll J L 2012 Adv. Funct. Mater. 22 2202

    [53]

    Wang L, Zhao Y, Wang G, Zhou H, Geng C, Wu C, Xu J 2014 Sol. Energy Mater. Sol. Cells 130 387

    [54]

    Brittman S, Yoo Y, Dasgupta N P, Kim S, Kim B, Yang P 2014 Nano Lett. 14 4665

    [55]

    Yang T H 2015 Ph. D. Dissertation (Kaifeng: Henan University) (in Chinese) [杨同辉 2015 博士学位论文 (开封: 河南大学)]

    [56]

    Liu Y, Turley H K, Tumbleston J R, Samulski E T, Lopez R Appl. Phys. Lett. 98 162105

    [57]

    Musselman K P, Levskaya Y, MacManus-Driscoll J L 2012 Appl. Phys. Lett. 101 253503

    [58]

    Takiguchi Y, Miyajima S 2015 Jpn. J. Appl. Phys. 54 112303

    [59]

    Liu D, Han D, Huang M, Zhang X, Zhang T, Dai C, Chen S 2018 Chin. Phys. B 27 018806

    [60]

    Wei H, Li D, Zheng X, Meng Q 2018 Chin. Phys. B 27 018808

    [61]

    Minami T, Miyata T, Nishi Y 2014 Thin Solid Films 559 105

    [62]

    Minami T, Miyata T, Nishi Y 2014 Sol. Energy 105 206

    [63]

    Li J, Mei Z, Liu L, Liang H, Azarov A, Kuznetsov A, Liu Y, Ji A, Meng Q, Du X 2014 Sci. Rep. 4 7240

    [64]

    Mitroi M R, Ninulescu V, Fara L 2017 Int J. Photo- energy 2017 7284367

  • [1]

    Zhao J, Wang A, Green M A 1999 Prog. Photovolt.: Res. Appl. 7 471

    [2]

    Nelson J (translated by Gao Y) 2011 The Physics of Solar Cells (Shanghai: Shanghai Jiaotong University Press) pp148-206 (in Chinese) [纳尔逊J 著(高扬 译) 2011 太阳能电池物理 (上海: 上海交通大学出版社) 第148206页]

    [3]

    Green M A 2002 Physica E 14 65

    [4]

    Shah A 2004 Prog. Photovolt.: Res. Appl. 12 113

    [5]

    Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [6]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt.: Res. Appl. 19 894

    [7]

    Wu X 2004 Sol. Energy 77 803

    [8]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Goutam Paul K, Sakurai T 2006 Sol. Energy 80 715

    [9]

    Henry C H 1980 J. Appl. Phys. 51 4494

    [10]

    Xie J, Guo C, Li C 2013 Phys. Chem. Chem. Phys. 15 15905

    [11]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsieh J H, Chen I C 2007 Scripta Mater. 57 53

    [12]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [13]

    Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R 2006 Appl. Phys. Lett. 88 163502

    [14]

    Minami T, Nishi Y, Miyata T, Nomoto J 2011 Appl. Phys. Express 4 062301

    [15]

    Ishizuka S, Suzuki K, Okamoto Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K, Niki S 2004 Phys. Status Solidi C 1 1067

    [16]

    Lv P, Zheng W, Lin L, Peng F, Huang Z, Lai F 2011 Physica B 406 1253

    [17]

    Terence K S W, Siarhei Z, Saeid M P, Goutam K D 2016 Materials 9 271

    [18]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. B 76 045209

    [19]

    Papadimitriou L, Economou N A, Trivich D 1981 Sol. Cells 3 73

    [20]

    Ishizuka S, Kato S, Okamoto Y, Akimoto K 2002 Appl. Phys. Lett. 80 950

    [21]

    Ishizuka S, Akimoto K 2004 Appl. Phys. Lett. 85 4920

    [22]

    Kikuchi N, Tonooka K 2005 Thin Solid Films 486 33

    [23]

    Ishizuka S, Kato S, Maruyama T, Akimoto T 2001 Jpn. Appl. Phys. 40 2765

    [24]

    Malerba C, Ricardo C L A, DIncau M, Biccari F, Scardi P, Mittiga A 2012 Sol. Energy Mater. Sol. Cells 105 192

    [25]

    Huang Q, Wang L, Bi X 2013 J. Phys. D: Appl. Phys. 46 505101

    [26]

    Pu C Y, Li H J, Tang X, Zhang Q Y 2012 Acta Phys. Sin. 61 047104(in Chinese) [濮春英, 李洪婧, 唐鑫, 张庆瑜 2012 物理学报 61 047104]

    [27]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [28]

    Fay S, Feitknecht L, Schluchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [29]

    Chen L 2017 M. S. Dissertation (Tianjin: Nankai University) (in Chinese) [陈莉 2017 硕士学位论文 (天津: 南开大学)]

    [30]

    Luo Y P 2012 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [罗业萍 2012 硕士学位论文 (杭州: 浙江大学)]

    [31]

    Hame Y, San S E 2004 Sol. Energy 77 291

    [32]

    Han K, Tao M 2009 Sol. Energy Mater. Sol. Cells 93 153

    [33]

    Li S S 2015 M. S. Dissertation (Chengdu: Xinan Jiaotong University) (in Chinese) [李思思 2015 硕士学位论文 (成都: 西南交通大学)]

    [34]

    McShane C M, Siripala W P, Choi K S 2010 J. Phys. Chem. Lett. 1 2666

    [35]

    Olsen L C, Bohara R C, Urie M W 1979 Appl. Phys. Lett. 34 47

    [36]

    Fujimoto K, Oku T, Akiyama T, Suzuki A 2013 J. Phys.: Conf. Ser. 433 012024

    [37]

    Izaki M, Shinagawa T, Mizuno K T, Ida Y, Inaba M, Tasaka A 2007 J. Phys. D 40 3326

    [38]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [39]

    Wilson S S, Bosco J P, Tolstova Y, Scanlon D O, Watson G W, Atwater H A 2014 Energy Environ. Sci. 7 3606

    [40]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K, Sakurai T 2006 Sol. Energy 80 715

    [41]

    Nishi Y, Miyata T, Minami T 2013 Thin Solid Films 528 72

    [42]

    Minami T, Nishi Y, Miyata T 2013 Appl. Phys. Express 6 044101

    [43]

    Minami T, Nishi Y, Miyata T 2015 Appl. Phys. Express 8 022301

    [44]

    Minami T, Nishi Y, Miyata T 2016 Appl. Phys. Express 9 052301

    [45]

    Lee Y S, Heo J, Siah C S, Mailoa J P, Brandt R E, Kim S B, Lee S W, Gordon R G, Buonassisi T 2013 Energy Environ. Sci. 6 2112

    [46]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [47]

    Lee Y S, Heo J, Winkler M T, Siah S C, Kim S B, Gordon R G, Buonassisi T 2013 J. Mater. Chem. A 1 15416

    [48]

    Marin A T, Rojas D M, Iza D C, Gershon T, Musselman K P, MacManus-Driscoll J L 2013 Adv. Funct. Mater. 23 3413

    [49]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsiehc J H, Chen I C 2007 Scripta Mater. 57 53

    [50]

    Chen J W, Perng D C, Fang J F 2011 Sol. Energy Mater. Sol. Cells 95 2471

    [51]

    Musselman K P, Wisnet A, Iza D C, Hesse H C, Scheu C, MacManus-Driscoll J L, Schmidt-Mende L 2010 Adv. Mater. 22 E254

    [52]

    Musselman K P, Marin A, Schmidt-Mende L, MacManus-Driscoll J L 2012 Adv. Funct. Mater. 22 2202

    [53]

    Wang L, Zhao Y, Wang G, Zhou H, Geng C, Wu C, Xu J 2014 Sol. Energy Mater. Sol. Cells 130 387

    [54]

    Brittman S, Yoo Y, Dasgupta N P, Kim S, Kim B, Yang P 2014 Nano Lett. 14 4665

    [55]

    Yang T H 2015 Ph. D. Dissertation (Kaifeng: Henan University) (in Chinese) [杨同辉 2015 博士学位论文 (开封: 河南大学)]

    [56]

    Liu Y, Turley H K, Tumbleston J R, Samulski E T, Lopez R Appl. Phys. Lett. 98 162105

    [57]

    Musselman K P, Levskaya Y, MacManus-Driscoll J L 2012 Appl. Phys. Lett. 101 253503

    [58]

    Takiguchi Y, Miyajima S 2015 Jpn. J. Appl. Phys. 54 112303

    [59]

    Liu D, Han D, Huang M, Zhang X, Zhang T, Dai C, Chen S 2018 Chin. Phys. B 27 018806

    [60]

    Wei H, Li D, Zheng X, Meng Q 2018 Chin. Phys. B 27 018808

    [61]

    Minami T, Miyata T, Nishi Y 2014 Thin Solid Films 559 105

    [62]

    Minami T, Miyata T, Nishi Y 2014 Sol. Energy 105 206

    [63]

    Li J, Mei Z, Liu L, Liang H, Azarov A, Kuznetsov A, Liu Y, Ji A, Meng Q, Du X 2014 Sci. Rep. 4 7240

    [64]

    Mitroi M R, Ninulescu V, Fara L 2017 Int J. Photo- energy 2017 7284367

  • [1] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [2] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [3] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [4] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [5] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [6] Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Kong Chao, Cao Wen-Zhe, Gong Wei, Liu Rui, Cao Xiao-Ning. Inserting various cathodic buffer layers to enhancethe performance of Pentacene/C60based organic solar cells. Acta Physica Sinica, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [7] Gong Wei, Xu Zheng, Zhao Su-Ling, Liu Xiao-Dong, Yang Qian-Qian, Fan Xing. Effects of NPB anode buffer layer on the performances of inverted bulk heterojunction polymer solar cells. Acta Physica Sinica, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [8] Wei Wei, Liu Ming, Qu Sheng-Wei, Zhang Qing-Yu. Photoluminescence of as-grown and annealed ZnO films on Ti-buffered Si(111) substrates. Acta Physica Sinica, 2009, 58(8): 5736-5743. doi: 10.7498/aps.58.5736
    [9] Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang. Physical mechanism and optimal design of silicon heterojunction solar cells. Acta Physica Sinica, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [10] Xie Qing-Lian, Yan Shao-Lin, Zhao Xin-Jie, Fang Lan, Ji Lu, Zhang Yu-Ting, You Shi-Tou, Li Jia-Lei, Zhang Xu, Zhou Tie-Ge, Zuo Tao, Yue Hong-Wei. Effects of annealing of r-cut sapphire substrate on its surface morphology and the growth of CeO2 buffer layers and the Tl-2212 superconducting films. Acta Physica Sinica, 2008, 57(1): 519-525. doi: 10.7498/aps.57.519
  • Citation:
Metrics
  • Abstract views:  365
  • PDF Downloads:  276
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2017
  • Accepted Date:  11 December 2017
  • Published Online:  05 June 2018

Progress of Cu2O/ZnO oxide heterojunction solar cells

    Corresponding author: Chen Xin-Liang, cxlruzhou@163.com
  • 1. Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology, Institute of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707) and the Key Program of Tianjin Natural Science Foundation, China (Grant No. 13JCZDJC26900).

Abstract: Recent progress of low cost Cu2O/ZnO hetero-junction solar cells is reviewed in this paper. The Cu2O used as an absorbing layer in photovoltaic cells is a direct bandgap semiconductor, exhibiting natural p-type conductivity. The source material of Cu2O-based solar cells is abundant and environmentally friendly. The main device structure of Cu2O/ZnO solar cells presents a planar and nano-wire/nano-rod configuration. The nanostructured Cu2O architecture conduces to charge collection in the device. The planar Cu2O absorbing layer with large grain size, achieved through the thermal oxidation of Cu sheets, exhibits high quality of the Cu2O/ZnO solar cells. The interface buffer layer (like i-ZnO, a-ZTO and Ga2O3) and back surface field (BSF, such as p+-Cu2O) can effectively improve energy band alignment match and increase carrier transport. The Cu2O paired with a 10-nm-thick Ga2O3 layer provides a nearly ideal conduction band offset and thus reduces the interface recombination. The Ga2O3 is a highly suitable buffer layer for enhancing the Voc (Voc value reaches 1.2 V) and conversion efficiency of Cu2O-based solar cells. The p+-Cu2O like N-doped Cu2O (Cu2O:N) and Na-doped Cu2O (Cu2O:Na) can reduce back-contact resistance and create an electron-reflecting back surface field in the Cu2O based solar cells. When a p-type Cu2O: Na acts as an absorbing layer and a zinc-germanium-oxide (Zn1-xGex-O) thin film is used as an n-type layer (buffer), Cu2O hetero-junction solar cell with the device structure MgF2/Al-doped ZnO (ZnO:Al)/Zn0.38Ge0.62-O/Cu2O:Na shows an efficiency of 8.1%. The oxide hetero-junction solar cells have a great potential application in the future photovoltaic field.

Reference (64)

Catalog

    /

    返回文章
    返回