搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响

龚伟 徐征 赵谡玲 刘晓东 杨倩倩 樊星

NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响

龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星
PDF
导出引用
  • 制备了给体材料为poly(3-hexylthiophene)(P3HT),受体材料为[6,6]-phenyl-C60-butyric acid methyl ester(PCBM),器件结构为ITO/ZnO/P3HT:PCBM/NPB(0,1,5,10,25 nm)/Ag的反型体异质结聚合物太阳能电池. 不同厚度的N,N’-diphenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4’-diamine(NPB)阳极缓冲层被用来改善器件性能,研究了NPB阳极缓冲层对器件特性的影响. 研究发现,1 nm厚的NPB改善了器件的载流子收集效率,增加了器件的短路电流与开路电压. 当NPB缓冲层的厚度达到25 nm时,过厚的NPB导致串联电阻增加,使得器件特性大幅下降. 通过电容-电压测试,进一步研究了不同厚度NPB对器件载流子注入与收集的影响,1 nm厚的NPB修饰并没有改善器件的载流子注入但是增加了器件对光生载流子的收集效率,过厚的NPB使得自由载流子的复合占据主导. 适合厚度的NPB可以作为一种阳极缓冲层材料应用于聚合物太阳能电池提高器件特性.
    • 基金项目: 国家重点基础研究发展计划(973计划)项目(批准号:2010CB327704)、教育部博士点基金(批准号:20130009130001)、国家自然科学基金(批准号:51272022)、教育部博士点基金(批准号:20120009130005)、教育部新世纪优秀人才支持计划(批准号:NCET-10-0220)和中央高校基本科研业务费专项资金(批准号:2012JBZ001)资助的课题.
    [1]

    Jonsson S K M, Carlegrim E, Zhang F, Salaneck W R, Fahlman M 2005 Jpn. J. Appl. Phys. 44 3695

    [2]

    Yook K S, Lee J Y 2010 J. Ind. Eng. Chem. 16 230

    [3]

    Liu X D, Leeb J Y, Guob L J 2013 Org. Electron. 14 469

    [4]

    Zhao D W, Tan S T, Ke L, Liu P, Kyaw AKK, Sun X W, Lo G Q, Kwong D L 2010 Sol. Energ. Mater. Sol. C 94 985

    [5]

    Pan H B, Zuo L J, Fu W F, Fan C C, Andreasen B, Jiang X Q, Norrman K, Krebs F C, Chen H Z 2013 Org. Electron. 14 797

    [6]

    Shrotriya V, Li G, Yao Y, Chu C-W, Yang Y 2006 Appl. Phys. Lett. 88 073508

    [7]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G, Xu X R 2010 Chin. Phys. B 19 118601

    [8]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Yan G, Kong C, Wang Y S, Xu X R 2011 Chin. Phys. B 20 068801

    [9]

    Cai W Z, Gong X, Cao Y 2010 Sol. Energ. Mater. Sol. C 94 114

    [10]

    Hung L S, Tang C W, Mason M G 1997 Appl. Phys. Lett. 70 152

    [11]

    Zhang F J, Zhao D W, Zhuo Z L, Wang H, Xu Z, Wang Y S 2010 Sol. Energ. Mater. Sol. C 94 2416

    [12]

    Li Z F, Wu Z X, Jiao B, Liu P, Wang D D, Hou X 2012 Chem. Phys. Lett. 527 36

    [13]

    Xie G H, Xue Q, Chen P, Tao C, Zhao C M, Lu J H, Gong Z X, Zhang T Y, Huang R, Du H 2010 Org. Electron. 11 407

    [14]

    Halls M D, Tripp C P, Schlegel H B 2001 Phys. Chem. Chem. Phys. 3 2131

    [15]

    Wang J C, Ren X C, Shi S Q, Leung C W, Chan P K L 2011 Org. Electron. 12 880

    [16]

    Zhao C, Qiao X F, Chen B B, Hu B 2013 Org. Electron. 14 2192

    [17]

    Chen B B, Qiao X F, Liu C M, Zhao C, Chen H C, Wei K H, Hu B 2013 Appl. Phys. Lett. 102 193302

    [18]

    Shrotriya V, Yang Y 2005 J. Appl. Phys. 97 054504

    [19]

    Tsang S W, So S K, Xu J B 2006 J. Appl. Phys. 99 013706

    [20]

    Garcia-Belmonte G, Munar A, Barea E M, Bisquert J, Ugarte I, Pacios R 2008 Org. Electron. 9 847

    [21]

    He C, Zhong C M, Wu H B, Yang R Q, Yang W, Huang F, Bazan G C, Cao Y 2010 J. Mater. Chem. 20 2617

    [22]

    He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y 2011 Adv. Mater. 23 4636

    [23]

    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert, J 2011 Phys. Chem. Chem. Phys. 13 9083

    [24]

    Wang M D, Zheng S Z, Wan X, Su Y R, Ke N, Zhao N, Wong K Y, Xu J B 2013 Sol. Energ. Mater. Sol. C 108 17

    [25]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [26]

    Shuttle C G, Hamilton R, O’Regan B C, Nelson J, Durrant J R 2010 Proc. Natl. Acad. Sci. 107 16448

  • [1]

    Jonsson S K M, Carlegrim E, Zhang F, Salaneck W R, Fahlman M 2005 Jpn. J. Appl. Phys. 44 3695

    [2]

    Yook K S, Lee J Y 2010 J. Ind. Eng. Chem. 16 230

    [3]

    Liu X D, Leeb J Y, Guob L J 2013 Org. Electron. 14 469

    [4]

    Zhao D W, Tan S T, Ke L, Liu P, Kyaw AKK, Sun X W, Lo G Q, Kwong D L 2010 Sol. Energ. Mater. Sol. C 94 985

    [5]

    Pan H B, Zuo L J, Fu W F, Fan C C, Andreasen B, Jiang X Q, Norrman K, Krebs F C, Chen H Z 2013 Org. Electron. 14 797

    [6]

    Shrotriya V, Li G, Yao Y, Chu C-W, Yang Y 2006 Appl. Phys. Lett. 88 073508

    [7]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G, Xu X R 2010 Chin. Phys. B 19 118601

    [8]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Yan G, Kong C, Wang Y S, Xu X R 2011 Chin. Phys. B 20 068801

    [9]

    Cai W Z, Gong X, Cao Y 2010 Sol. Energ. Mater. Sol. C 94 114

    [10]

    Hung L S, Tang C W, Mason M G 1997 Appl. Phys. Lett. 70 152

    [11]

    Zhang F J, Zhao D W, Zhuo Z L, Wang H, Xu Z, Wang Y S 2010 Sol. Energ. Mater. Sol. C 94 2416

    [12]

    Li Z F, Wu Z X, Jiao B, Liu P, Wang D D, Hou X 2012 Chem. Phys. Lett. 527 36

    [13]

    Xie G H, Xue Q, Chen P, Tao C, Zhao C M, Lu J H, Gong Z X, Zhang T Y, Huang R, Du H 2010 Org. Electron. 11 407

    [14]

    Halls M D, Tripp C P, Schlegel H B 2001 Phys. Chem. Chem. Phys. 3 2131

    [15]

    Wang J C, Ren X C, Shi S Q, Leung C W, Chan P K L 2011 Org. Electron. 12 880

    [16]

    Zhao C, Qiao X F, Chen B B, Hu B 2013 Org. Electron. 14 2192

    [17]

    Chen B B, Qiao X F, Liu C M, Zhao C, Chen H C, Wei K H, Hu B 2013 Appl. Phys. Lett. 102 193302

    [18]

    Shrotriya V, Yang Y 2005 J. Appl. Phys. 97 054504

    [19]

    Tsang S W, So S K, Xu J B 2006 J. Appl. Phys. 99 013706

    [20]

    Garcia-Belmonte G, Munar A, Barea E M, Bisquert J, Ugarte I, Pacios R 2008 Org. Electron. 9 847

    [21]

    He C, Zhong C M, Wu H B, Yang R Q, Yang W, Huang F, Bazan G C, Cao Y 2010 J. Mater. Chem. 20 2617

    [22]

    He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y 2011 Adv. Mater. 23 4636

    [23]

    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert, J 2011 Phys. Chem. Chem. Phys. 13 9083

    [24]

    Wang M D, Zheng S Z, Wan X, Su Y R, Ke N, Zhao N, Wong K Y, Xu J B 2013 Sol. Energ. Mater. Sol. C 108 17

    [25]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [26]

    Shuttle C G, Hamilton R, O’Regan B C, Nelson J, Durrant J R 2010 Proc. Natl. Acad. Sci. 107 16448

  • [1] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [2] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究. 物理学报, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [3] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度. 物理学报, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [4] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [5] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [6] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [7] 李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭. 基于光学与光—电转换模型对聚合物电池功能层厚度与性能相关性分析. 物理学报, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [8] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [9] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究. 物理学报, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [10] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究. 物理学报, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [11] 肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦. NiO透明导电薄膜的制备及在聚合物太阳能电池中的应用. 物理学报, 2012, 61(2): 026802. doi: 10.7498/aps.61.026802
    [12] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析. 物理学报, 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [13] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [14] 甄聪棉, 马 丽, 张金娟, 刘 英, 聂向富. Ti(Cr)缓冲层对用于垂直磁记录材料CoCrTa介质磁特性和微结构的影响. 物理学报, 2007, 56(3): 1730-1734. doi: 10.7498/aps.56.1730
    [15] 魏玮, 刘明, 曲盛薇, 张庆瑜. Ti缓冲层及退火处理对Si(111)基片上生长的ZnO薄膜结构和发光特性的影响. 物理学报, 2009, 58(8): 5736-5743. doi: 10.7498/aps.58.5736
    [16] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [17] 谢清连, 阎少林, 赵新杰, 方 兰, 季 鲁, 张玉婷, 游石头, 李加蕾, 张 旭, 周铁戈, 左 涛, 岳宏卫. 高温退火对蓝宝石基片的表面形貌和对CeO2缓冲层以及Tl-2212超导薄膜生长的影响. 物理学报, 2008, 57(1): 519-525. doi: 10.7498/aps.57.519
    [18] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [19] 李琦, 章勇. 基于聚多巴胺/氧化锌复合阴极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2017, 66(19): 198201. doi: 10.7498/aps.66.198201
    [20] 李琦, 章勇. 基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
  • 引用本文:
    Citation:
计量
  • 文章访问数:  896
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-30
  • 修回日期:  2013-12-17
  • 刊出日期:  2014-04-05

NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响

  • 1. 北京交通大学发光与光信息技术教育部重点实验室, 北京交通大学光电子技术研究所, 北京 100044
    基金项目: 

    国家重点基础研究发展计划(973计划)项目(批准号:2010CB327704)、教育部博士点基金(批准号:20130009130001)、国家自然科学基金(批准号:51272022)、教育部博士点基金(批准号:20120009130005)、教育部新世纪优秀人才支持计划(批准号:NCET-10-0220)和中央高校基本科研业务费专项资金(批准号:2012JBZ001)资助的课题.

摘要: 制备了给体材料为poly(3-hexylthiophene)(P3HT),受体材料为[6,6]-phenyl-C60-butyric acid methyl ester(PCBM),器件结构为ITO/ZnO/P3HT:PCBM/NPB(0,1,5,10,25 nm)/Ag的反型体异质结聚合物太阳能电池. 不同厚度的N,N’-diphenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4’-diamine(NPB)阳极缓冲层被用来改善器件性能,研究了NPB阳极缓冲层对器件特性的影响. 研究发现,1 nm厚的NPB改善了器件的载流子收集效率,增加了器件的短路电流与开路电压. 当NPB缓冲层的厚度达到25 nm时,过厚的NPB导致串联电阻增加,使得器件特性大幅下降. 通过电容-电压测试,进一步研究了不同厚度NPB对器件载流子注入与收集的影响,1 nm厚的NPB修饰并没有改善器件的载流子注入但是增加了器件对光生载流子的收集效率,过厚的NPB使得自由载流子的复合占据主导. 适合厚度的NPB可以作为一种阳极缓冲层材料应用于聚合物太阳能电池提高器件特性.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回