-
现实中各网络之间的耦合促进了网络间的交流,但也带来了级联故障大范围传播的风险. 考虑到故障的传播一般存在时滞,并且一个节点可能拥有不止一条耦合边的情况,本文构建了基于时滞耦合映像格子的多耦合边无标度耦合网络级联故障模型. 研究表明,对于BA(Barabási-Albert)无标度耦合网络,存在一个阈值hT ≈ 3,当耦合强度小于此阈值时,耦合越强抗毁性越弱;反之,耦合越强抗毁性反而越强. 另外,研究发现时滞对耦合网络的影响不仅仅是延长了故障传播的时间,为采取防护措施争取了时间,而且也对最终故障规模产生了影响,具体地,当层内时滞τ1和层间时滞τ2可取任意值时,当两者成整数倍关系时其最终故障规模将更大. 本文的研究可为构建高抗毁性的耦合网络或提高耦合网络的级联抗毁性提供参考.
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabási A L, Albert R 1999 Science 286 509
[3] Liu G, Li Y S 2012 Acta Phys. Sin. 61 108901 (in Chinese)[刘刚, 李永树2012 物理学报61 108901]
[4] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwanga D U 2006 Phys. Rep. 424 175
[5] Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101 (R)
[6] Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102
[7] Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104(R)
[8] Wang X F, Xu J 2004 Phys. Rev. E 70 056113
[9] Wang J W 2012 Physica A 391 4004
[10] Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671
[11] Ash J, Newth D 2007 Physica A 380 673
[12] Motter A E 2004 Phys. Rev. Lett. 93 098701
[13] Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310
[14] Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206
[15] Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025
[16] Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116
[17] Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nature Physics. 8 40
[18] Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702
[19] Huang X Q, Shao S, Wang H J, Buldyrev S V, Stanley H E, Havlin S 2013 EPL 101 18002
[20] Brummitt C D, D Souza R M, Leicht E A 2012 PNAS 109 E680
[21] Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009
[22] Qiu Y Z 2013 Physica A 392 1920
[23] Xu J, Wang X F 2005 Physica A 349 685
[24] Cui D, Gao Z Y, Zhao X M 2008 Chin. Phys. B 17 1703
[25] Cui D, Gao Z Y, Zheng J F 2009 Chin. Phys. B 18 992
[26] Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109
-
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabási A L, Albert R 1999 Science 286 509
[3] Liu G, Li Y S 2012 Acta Phys. Sin. 61 108901 (in Chinese)[刘刚, 李永树2012 物理学报61 108901]
[4] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwanga D U 2006 Phys. Rep. 424 175
[5] Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101 (R)
[6] Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102
[7] Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104(R)
[8] Wang X F, Xu J 2004 Phys. Rev. E 70 056113
[9] Wang J W 2012 Physica A 391 4004
[10] Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671
[11] Ash J, Newth D 2007 Physica A 380 673
[12] Motter A E 2004 Phys. Rev. Lett. 93 098701
[13] Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310
[14] Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206
[15] Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025
[16] Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116
[17] Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nature Physics. 8 40
[18] Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702
[19] Huang X Q, Shao S, Wang H J, Buldyrev S V, Stanley H E, Havlin S 2013 EPL 101 18002
[20] Brummitt C D, D Souza R M, Leicht E A 2012 PNAS 109 E680
[21] Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009
[22] Qiu Y Z 2013 Physica A 392 1920
[23] Xu J, Wang X F 2005 Physica A 349 685
[24] Cui D, Gao Z Y, Zhao X M 2008 Chin. Phys. B 17 1703
[25] Cui D, Gao Z Y, Zheng J F 2009 Chin. Phys. B 18 992
[26] Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109
引用本文: |
Citation: |
计量
- 文章访问数: 1241
- PDF下载量: 461
- 被引次数: 0