搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子在弱相干场光纤耦合腔系统中的纠缠特性

汪仲清 赵小奇 周贤菊

原子在弱相干场光纤耦合腔系统中的纠缠特性

汪仲清, 赵小奇, 周贤菊
PDF
导出引用
  • 研究由两个相同的二能级原子分别处于用单模光纤耦合的两弱相干光场系统的共生纠缠特性, 通过数值计算研究了光纤模-腔模与原子-腔模的耦合强度比、弱相干光场的强度和两光场相对相位差等因素对系统纠缠演化的影响. 结果表明: 两腔中的两原子之间、两光场之间和每个腔中的原子与光场之间的纠缠随时间呈现周期或准周期性演化, 两腔场之间的纠缠与腔中的两原子的纠缠可以相互转换, 与两原子之间和两光场之间的纠缠相比, 每个腔中光场与原子之间的纠缠随时间变化的周期缩短. 光纤模-腔模与原子-腔模的耦合强度比与两腔中光场相位差对系统纠缠的影响很大, 较小的光纤模-腔模与原子-腔模的耦合强度之比可以获得较大的系统纠缠度.
    • 基金项目: 重庆市自然科学基金(批准号: CSTC2011jjA50016)资助的课题.
    [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W 1993 Phys. Rev. Lett. 70 1895

    [3]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [4]

    Zhang Q, Zhang E Y, Tang C J 2002 Acta Phys. Sin. 51 1675 (in Chinese) [张权, 张尔扬, 唐朝京 2002 物理学报 51 1675]

    [5]

    Zhang Q, Zhang E Y 2002 Acta Phys. Sin. 51 1684 (in Chinese) [张权, 张尔扬 2002 物理学报 51 1684]

    [6]

    Ye L, Guo G C 2002 Chin. Phys. 11 996

    [7]

    Ficek Z, Tanas R 2006 Phys. Rev. A 74 024304

    [8]

    Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405

    [9]

    Vaglica A, Vetri G 2007 Phys. Rev. A 75 062120

    [10]

    Zhang D Y, Tang S Q, Xie L J, Zhan X G, Chen Y H, Gao F 2010 Chin. Phys. B 19 100313

    [11]

    Wang Z J, Zhang K, Fan C Y 2010 Chin. Phys. B 19 110311

    [12]

    Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L, Zhang Z M 2010 Chin. Phys. B 19 094207

    [13]

    Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M 1997 Phys. Rev. Lett. 79 1

    [14]

    Rauschenbeutel A, Nogues G, Osnaghi S 2000 Science 288 2024

    [15]

    Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M, Haroche S 2001 Phys. Rev. Lett. 87 037902

    [16]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [17]

    Olaya-Castro A, Johnson N F, Quiroga L 2004 Phys. Rev. A 70 020301

    [18]

    GaoY F, Feng J, Zhang G M 2006 J. At. Mo1. Phys. 23 887

    [19]

    Tesser T E, Deutsch I H, Delgada A 2003 Phys. Rev. A 68 062316

    [20]

    Wang C Z, Fang M F 2002 Acta Phys. Sin. 51 1989 (in Chinese) [王成志, 方卯发 2002 物理学报 51 1989]

    [21]

    Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese) [张英杰, 周 原, 夏云杰 2002 物理学报 57 21]

    [22]

    Serafini A, Mancini S, Bose S 2006 Phys. Rev. Lett. 96 010503

    [23]

    Yin Z Q, Li F L 2007 Phys. Rev. A 75 012324

    [24]

    Zheng S B 2009 Appl. Phys. Lett. 94 154101

    [25]

    Ye S Y, Zhong Z R, Zheng S B 2008 Phys. Rev. A 77 014303

    [26]

    Zhang B 2010 Opt. Commun. 283 196

    [27]

    Xiao X, Fang M F 2009 Chin. Phys. B 18 4695

    [28]

    Lu D M 2013 Acta Phys. Sin. 62 030302 (in Chinese) [卢道明 2013 物理学报 62 030302]

    [29]

    Pellizzari T 1997 Phys. Rev. Lett. 79 5242

    [30]

    Li F L, Li X S, Lin D L, George T F 1990 Phys. Rev. A 41 2712

    [31]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [32]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

  • [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W 1993 Phys. Rev. Lett. 70 1895

    [3]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [4]

    Zhang Q, Zhang E Y, Tang C J 2002 Acta Phys. Sin. 51 1675 (in Chinese) [张权, 张尔扬, 唐朝京 2002 物理学报 51 1675]

    [5]

    Zhang Q, Zhang E Y 2002 Acta Phys. Sin. 51 1684 (in Chinese) [张权, 张尔扬 2002 物理学报 51 1684]

    [6]

    Ye L, Guo G C 2002 Chin. Phys. 11 996

    [7]

    Ficek Z, Tanas R 2006 Phys. Rev. A 74 024304

    [8]

    Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405

    [9]

    Vaglica A, Vetri G 2007 Phys. Rev. A 75 062120

    [10]

    Zhang D Y, Tang S Q, Xie L J, Zhan X G, Chen Y H, Gao F 2010 Chin. Phys. B 19 100313

    [11]

    Wang Z J, Zhang K, Fan C Y 2010 Chin. Phys. B 19 110311

    [12]

    Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L, Zhang Z M 2010 Chin. Phys. B 19 094207

    [13]

    Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M 1997 Phys. Rev. Lett. 79 1

    [14]

    Rauschenbeutel A, Nogues G, Osnaghi S 2000 Science 288 2024

    [15]

    Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M, Haroche S 2001 Phys. Rev. Lett. 87 037902

    [16]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [17]

    Olaya-Castro A, Johnson N F, Quiroga L 2004 Phys. Rev. A 70 020301

    [18]

    GaoY F, Feng J, Zhang G M 2006 J. At. Mo1. Phys. 23 887

    [19]

    Tesser T E, Deutsch I H, Delgada A 2003 Phys. Rev. A 68 062316

    [20]

    Wang C Z, Fang M F 2002 Acta Phys. Sin. 51 1989 (in Chinese) [王成志, 方卯发 2002 物理学报 51 1989]

    [21]

    Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese) [张英杰, 周 原, 夏云杰 2002 物理学报 57 21]

    [22]

    Serafini A, Mancini S, Bose S 2006 Phys. Rev. Lett. 96 010503

    [23]

    Yin Z Q, Li F L 2007 Phys. Rev. A 75 012324

    [24]

    Zheng S B 2009 Appl. Phys. Lett. 94 154101

    [25]

    Ye S Y, Zhong Z R, Zheng S B 2008 Phys. Rev. A 77 014303

    [26]

    Zhang B 2010 Opt. Commun. 283 196

    [27]

    Xiao X, Fang M F 2009 Chin. Phys. B 18 4695

    [28]

    Lu D M 2013 Acta Phys. Sin. 62 030302 (in Chinese) [卢道明 2013 物理学报 62 030302]

    [29]

    Pellizzari T 1997 Phys. Rev. Lett. 79 5242

    [30]

    Li F L, Li X S, Lin D L, George T F 1990 Phys. Rev. A 41 2712

    [31]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [32]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

  • [1] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [2] 刘小娟, 刘一曼, 周并举. 原子与双模相干强场依赖强度耦合多光子过程中纠缠量度与制备. 物理学报, 2010, 59(12): 8518-8525. doi: 10.7498/aps.59.8518
    [3] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力. 物理学报, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [4] 卢道明. 三个耦合腔系统中的纠缠特性. 物理学报, 2012, 61(15): 150303. doi: 10.7498/aps.61.150303
    [5] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [6] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [7] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [8] 邢贵超, 夏云杰. 与热库耦合的光学腔内三原子间的纠缠动力学. 物理学报, 2018, 67(7): 070301. doi: 10.7498/aps.67.20172546
    [9] 卢道明. 型和V型三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [10] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究. 物理学报, 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [11] 张晓芳, 陈章耀, 毕勤胜. 耦合电路中的复杂振荡行为分析. 物理学报, 2009, 58(5): 2963-2970. doi: 10.7498/aps.58.2963
    [12] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [13] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [14] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [15] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [16] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [17] 熊恒娜, 郭 红, 江 健, 陈 俊, 唐丽艳. 原子间纠缠和光场模间纠缠的对应关系. 物理学报, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [18] 卢道明. 腔外原子操作控制腔内原子的纠缠特性. 物理学报, 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [19] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [20] 李海, 邹健, 邵彬, 陈雨, 华臻. 库的量子关联相干辅助系统能量提取的研究. 物理学报, 2019, 68(4): 040201. doi: 10.7498/aps.68.20181525
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1125
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-30
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-11-05

原子在弱相干场光纤耦合腔系统中的纠缠特性

  • 1. 重庆邮电大学数理学院, 重庆 400065
    基金项目: 

    重庆市自然科学基金(批准号: CSTC2011jjA50016)资助的课题.

摘要: 研究由两个相同的二能级原子分别处于用单模光纤耦合的两弱相干光场系统的共生纠缠特性, 通过数值计算研究了光纤模-腔模与原子-腔模的耦合强度比、弱相干光场的强度和两光场相对相位差等因素对系统纠缠演化的影响. 结果表明: 两腔中的两原子之间、两光场之间和每个腔中的原子与光场之间的纠缠随时间呈现周期或准周期性演化, 两腔场之间的纠缠与腔中的两原子的纠缠可以相互转换, 与两原子之间和两光场之间的纠缠相比, 每个腔中光场与原子之间的纠缠随时间变化的周期缩短. 光纤模-腔模与原子-腔模的耦合强度比与两腔中光场相位差对系统纠缠的影响很大, 较小的光纤模-腔模与原子-腔模的耦合强度之比可以获得较大的系统纠缠度.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回