Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses

Zhang Xiao-Qing He Hao Hu Ming-Lie Yan Xin Zhang Xia Ren Xiao-Min Wang Qing-Yue

Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses

Zhang Xiao-Qing, He Hao, Hu Ming-Lie, Yan Xin, Zhang Xia, Ren Xiao-Min, Wang Qing-Yue
PDF
Get Citation
  • The nonlinear optical properties of semiconductor nanowires are of vital importance in the researches of nano-optics and fabrication of nano-scale optoelectronic components. GaAs is a direct bandgap semiconductor material of wide bandgap, high electron mobility, large χ(2), high laser damage threshold and stable chemical properties, all of which make it a potential nonlinear optical material. In this report, based on the finite element method (FEM), we investigated the optical response and local field enhancement of GaAs nanowires perpendicular to the GaAs substrate surface. Under the radiation of femto-second laser pulses at different wavelengths, efficient second harmonic generation (SHG) signal was acquired from the nanowires. Furthermore, noise-free broadband SHG signal was also detected to be excitated by super-continuous femto-second pulses (1000-1300 nm). The high-efficiency SHG process could be attribated mainly to the local field enhancement effect of the nanowires. Our investigation is the first, as far as we know, demonstrate the SHG properties of GaAs nanowires, and the results suggest that GaAs nanowires are promising in the potential applications in nano-scale optical devices, integrated nanophotonic circuits, from which related nano-optics researches can benefit.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB327600, 2011CB808101), the New Teachers' Foundation for Doctor Stations of Ministry of Education of China (Grant No. 20110032120057), and the National Natural Science Foundation of China (Grant Nos. 61108080, 61020106007).
    [1]

    Qin J M, Tian L F, Zhao D X, Jiang D Y, Cao J M, Ding M, Guo Z 2011 Acta Phys. Sin. 60 107307 (in Chinese) [秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振 2011 物理学报 60 107307]

    [2]

    Ren S T, Wang Q, Zhao F, Qu S L 2012 Chin. Phys. B 21 038104

    [3]

    Yan H, Choe H S, Nam S W, Hu Y, Das S, Klemic J F, Ellenbogen J C, Lieber C M 2011 Nature 470 240

    [4]

    Garnett E, Yang P 2010 Nano Lett. 10 1082

    [5]

    Patolsky F, Timko B P, Zheng G, Lieber C M 2007 Mrs Bulletin 32 142

    [6]

    Johnson J C, Choi H, Knutsen K P, Schaller R D, Yang G P, Saykally R J 2002 Nature Mater. 1 106

    [7]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [8]

    Johnson J C, Yan H, Schaller R D, Petersen P B, Yang P, Saykally R J 2002 Nano Lett. 2 279

    [9]

    Nakayama Y, Pauzauskie P, Radenovic A, Onorato R, Saykally R, Liphardt J, Yang P 2007 Nature 447 1098

    [10]

    Prasanth R, van Vugt L K, Vanmaekelbergh D A M, Gerritsen H C 2006 Appl. Phys. Lett. 88 181501

    [11]

    Barrelet C J, Ee Ho-Seok, Kwon S, Park H 2011 Nano Lett. 11 3022

    [12]

    Zhang Y, Zhou H, Liu S W, Tian Z R, Xiao M 2009 Nano Lett. 9 2109

    [13]

    Fan W, Zhang S, Panoiu N-C, Abdenour A, Krishna S, Osgood Jr. R M, Malloy K J, Brueck S R J 2006 Nano Lett. 6 1027

    [14]

    Ye X, Huang H, Ren X, Yang Y, Guo J, Huang Y, Wang Q 2010 Chin. Phys. Lett. 27 046101

    [15]

    Carl J B, Andrew B G, Lieber C M 2004 Nano Lett. 4 1981

    [16]

    Lide D R 2009 CRC handbook of chemistry and physics: a ready-refetence book of chemical and physical data, 90 th Edition (CRC Press)

    [17]

    Duan X, Wang J, Lieber C M 2000 Appl. Phys. Lett. 76 1116

    [18]

    Palik E D 1985 Handbook of Optical Constants of Solids (Boston, Academic Press)

    [19]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [20]

    Lu C, Huang W, Luan J, Lu Z, Qian Y, Yun B, Hu G, Wang Z, Cui Y 2008 Opt. Commun. 281 4038

    [21]

    Gualtieri E J, Haupert L M, Simpson G J 2008 Chem. Phys. Lett. 465 167

  • [1]

    Qin J M, Tian L F, Zhao D X, Jiang D Y, Cao J M, Ding M, Guo Z 2011 Acta Phys. Sin. 60 107307 (in Chinese) [秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振 2011 物理学报 60 107307]

    [2]

    Ren S T, Wang Q, Zhao F, Qu S L 2012 Chin. Phys. B 21 038104

    [3]

    Yan H, Choe H S, Nam S W, Hu Y, Das S, Klemic J F, Ellenbogen J C, Lieber C M 2011 Nature 470 240

    [4]

    Garnett E, Yang P 2010 Nano Lett. 10 1082

    [5]

    Patolsky F, Timko B P, Zheng G, Lieber C M 2007 Mrs Bulletin 32 142

    [6]

    Johnson J C, Choi H, Knutsen K P, Schaller R D, Yang G P, Saykally R J 2002 Nature Mater. 1 106

    [7]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [8]

    Johnson J C, Yan H, Schaller R D, Petersen P B, Yang P, Saykally R J 2002 Nano Lett. 2 279

    [9]

    Nakayama Y, Pauzauskie P, Radenovic A, Onorato R, Saykally R, Liphardt J, Yang P 2007 Nature 447 1098

    [10]

    Prasanth R, van Vugt L K, Vanmaekelbergh D A M, Gerritsen H C 2006 Appl. Phys. Lett. 88 181501

    [11]

    Barrelet C J, Ee Ho-Seok, Kwon S, Park H 2011 Nano Lett. 11 3022

    [12]

    Zhang Y, Zhou H, Liu S W, Tian Z R, Xiao M 2009 Nano Lett. 9 2109

    [13]

    Fan W, Zhang S, Panoiu N-C, Abdenour A, Krishna S, Osgood Jr. R M, Malloy K J, Brueck S R J 2006 Nano Lett. 6 1027

    [14]

    Ye X, Huang H, Ren X, Yang Y, Guo J, Huang Y, Wang Q 2010 Chin. Phys. Lett. 27 046101

    [15]

    Carl J B, Andrew B G, Lieber C M 2004 Nano Lett. 4 1981

    [16]

    Lide D R 2009 CRC handbook of chemistry and physics: a ready-refetence book of chemical and physical data, 90 th Edition (CRC Press)

    [17]

    Duan X, Wang J, Lieber C M 2000 Appl. Phys. Lett. 76 1116

    [18]

    Palik E D 1985 Handbook of Optical Constants of Solids (Boston, Academic Press)

    [19]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [20]

    Lu C, Huang W, Luan J, Lu Z, Qian Y, Yun B, Hu G, Wang Z, Cui Y 2008 Opt. Commun. 281 4038

    [21]

    Gualtieri E J, Haupert L M, Simpson G J 2008 Chem. Phys. Lett. 465 167

  • [1] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [2] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [3] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [4] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [5] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [6] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [7] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [9] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [10] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [11] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  998
  • PDF Downloads:  1396
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2012
  • Accepted Date:  06 November 2012
  • Published Online:  05 April 2013

Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses

  • 1. Ultrafast Laser Laboratory, School of Precision Instruments & Optoelectronics Engineering, Tianjin University; Key Laboratory of Optoelectronic Information Technical Science, Chinese Ministry of Education, Tianjin 300072, China;
  • 2. Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Fund Project:  Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB327600, 2011CB808101), the New Teachers' Foundation for Doctor Stations of Ministry of Education of China (Grant No. 20110032120057), and the National Natural Science Foundation of China (Grant Nos. 61108080, 61020106007).

Abstract: The nonlinear optical properties of semiconductor nanowires are of vital importance in the researches of nano-optics and fabrication of nano-scale optoelectronic components. GaAs is a direct bandgap semiconductor material of wide bandgap, high electron mobility, large χ(2), high laser damage threshold and stable chemical properties, all of which make it a potential nonlinear optical material. In this report, based on the finite element method (FEM), we investigated the optical response and local field enhancement of GaAs nanowires perpendicular to the GaAs substrate surface. Under the radiation of femto-second laser pulses at different wavelengths, efficient second harmonic generation (SHG) signal was acquired from the nanowires. Furthermore, noise-free broadband SHG signal was also detected to be excitated by super-continuous femto-second pulses (1000-1300 nm). The high-efficiency SHG process could be attribated mainly to the local field enhancement effect of the nanowires. Our investigation is the first, as far as we know, demonstrate the SHG properties of GaAs nanowires, and the results suggest that GaAs nanowires are promising in the potential applications in nano-scale optical devices, integrated nanophotonic circuits, from which related nano-optics researches can benefit.

Reference (21)

Catalog

    /

    返回文章
    返回