Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical design of the "Ying-Guang 1" device

Sun Qi-Zhi Fang Dong-Fan Liu Wei Qing Wei-Dong Jia Yue-Song Zhao Xiao-Ming Han Wen-Hui

Physical design of the "Ying-Guang 1" device

Sun Qi-Zhi, Fang Dong-Fan, Liu Wei, Qing Wei-Dong, Jia Yue-Song, Zhao Xiao-Ming, Han Wen-Hui
PDF
Get Citation
  • "Ying-Guang 1" is a multi-bank pulsed power device for investigating the formation, confinement and instability of the high temperature and high density field-reversed configuration (FRC) plasma injector for the magnetized target fusion (MTF). This paper described the physical design of the "Ying-Guang 1" device which will be constructed in 2013 at the Institute of Fluid Physics, CAEP. Theoretical results show that the peak reversed current and magnetic field of this device are 1.5 MA and 4 T respectively with the rise time of 3 μ s. Based on the semi-empirical formula developed by Tuszewski the magnetized plasma of equilibrium density 6.6×1016 cm-3 and temperature (Ti+Te) ~ 300 eV could be achieved on the "Ying-Guang 1" device when the initially filled D2 gas pressure is about 50 mTorr, and the length of the FRC separatrix is 17 cm with a radius of 2 cm. The average ratio of the thermal pressure to magnetic pressure β is about 0.95, and the magnetic field embedded in plasma is 0.5 T. From the adiabatic compression scaling laws and the corresponding ignition conditions, the formated FRC plasma target of the "Ying-Guang 1" device approaches the necessity of the MTF if the radius compression ratio of the solid metal liner were set to 10.
    • Funds: Project supported by the Development Foundation of China Academy of Engineering Physics (Grant No. 2011B0402009).
    [1]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J, Grabowski C, Ruden E L, Degnan J H, Cavazos T, Gale D G, Sommars W 2003 Rev. Sci. Instr. 74 4314

    [2]

    Degnan J H, Amdahl D J, Brown A, Cavazos T, Coffey S K, Domonkos M T, Frese M H, Frese S D, Gale D G, Grabowski T C, Intrator T P, Kirkpatrick R C, Kiuttu G F, Lehr F M, Letterio J D, Parker J V, Peterkin R E, Roderick N F, Ruden E L, Siemon R E, Sommars W, Tucker W, Turchi P J ,Wurden G A 2008 IEEE Trans. Plas. Sci. 36 80

    [3]

    Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shaupm M J, Megerhofer D D, Betti R 2009 Rev. Sci. Instr. 80 043504

    [4]

    Lynn A G, Merritt E, Gilmore M, Hsu S C, Witherspoon F D, Cassibry J T 2010 Rev. Sci. Instr. 81 10E115

    [5]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303

    [6]

    Stephen A S, Roger A V 2012 Phys. Rev. Lett. 108 025003

    [7]

    Finn J M, Sudan R N 1982 Nucl. Fusion 22 1443

    [8]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [9]

    Siemon R E, Armstrong W T, Bartsch R R 1983 Plasma Physics and Controlled Nuclear Fusion Research (Vol. 2) (Vienna: IAEA) p283

    [10]

    Intrator T, Zhang S Y, Degnan J H, Furno I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski W, Waganaar W J, Wurden G A 2004 Phys. Plasmas 11 2580

    [11]

    Degnan J H, Adamson P, Amdahl D J, Delaney R, Domonkos M T, Hackett K E, Lehr F M, Ruden E L, Tucker W, White W, Wood H, Grabowski C, Brown D, Gale D, Kostora M, Parker J, Sommars W, Frese M H, Frese S D, Camacho J F, Coffey S K, Makhin V, Intrator T P, Wurden G A, Sieck P, Turchi P J, Waganaar W J, Siemon R E, Awe T J, Bauer B S, Fuelling S, Lynn A G, Roderick N F 2010 Proceedings of the 13th International conference on Megagauss generation and relative topic Suzhou, P.R. China, July 6-10, 2010 p553

    [12]

    Green T S, Newton A A 1966 Phys. Fluids 9 1386

    [13]

    Tuszewski M 1988 Nucl. Fusion 28 2033

    [14]

    Tuszewski M 1988 Phys. Fluids 31 3754

    [15]

    Steinhauer L C 2011 Phys. Plasmas 18 070501

    [16]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59

  • [1]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, deVries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J, Grabowski C, Ruden E L, Degnan J H, Cavazos T, Gale D G, Sommars W 2003 Rev. Sci. Instr. 74 4314

    [2]

    Degnan J H, Amdahl D J, Brown A, Cavazos T, Coffey S K, Domonkos M T, Frese M H, Frese S D, Gale D G, Grabowski T C, Intrator T P, Kirkpatrick R C, Kiuttu G F, Lehr F M, Letterio J D, Parker J V, Peterkin R E, Roderick N F, Ruden E L, Siemon R E, Sommars W, Tucker W, Turchi P J ,Wurden G A 2008 IEEE Trans. Plas. Sci. 36 80

    [3]

    Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shaupm M J, Megerhofer D D, Betti R 2009 Rev. Sci. Instr. 80 043504

    [4]

    Lynn A G, Merritt E, Gilmore M, Hsu S C, Witherspoon F D, Cassibry J T 2010 Rev. Sci. Instr. 81 10E115

    [5]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303

    [6]

    Stephen A S, Roger A V 2012 Phys. Rev. Lett. 108 025003

    [7]

    Finn J M, Sudan R N 1982 Nucl. Fusion 22 1443

    [8]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [9]

    Siemon R E, Armstrong W T, Bartsch R R 1983 Plasma Physics and Controlled Nuclear Fusion Research (Vol. 2) (Vienna: IAEA) p283

    [10]

    Intrator T, Zhang S Y, Degnan J H, Furno I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski W, Waganaar W J, Wurden G A 2004 Phys. Plasmas 11 2580

    [11]

    Degnan J H, Adamson P, Amdahl D J, Delaney R, Domonkos M T, Hackett K E, Lehr F M, Ruden E L, Tucker W, White W, Wood H, Grabowski C, Brown D, Gale D, Kostora M, Parker J, Sommars W, Frese M H, Frese S D, Camacho J F, Coffey S K, Makhin V, Intrator T P, Wurden G A, Sieck P, Turchi P J, Waganaar W J, Siemon R E, Awe T J, Bauer B S, Fuelling S, Lynn A G, Roderick N F 2010 Proceedings of the 13th International conference on Megagauss generation and relative topic Suzhou, P.R. China, July 6-10, 2010 p553

    [12]

    Green T S, Newton A A 1966 Phys. Fluids 9 1386

    [13]

    Tuszewski M 1988 Nucl. Fusion 28 2033

    [14]

    Tuszewski M 1988 Phys. Fluids 31 3754

    [15]

    Steinhauer L C 2011 Phys. Plasmas 18 070501

    [16]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59

  • [1] Li Lu-Lu, Zhang Hua, Yang Xian-Jun. Translation process of field reversed configuration. Acta Physica Sinica, 2015, 64(12): 125202. doi: 10.7498/aps.64.125202
    [2] Li Lu-Lu, Zhang Hua, Yang Xian-Jun. Two-dimensional magneto-hydrodynamic description of field reversed configuration. Acta Physica Sinica, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [3] Chen Ru-Shan, Yang Yang, Yuan Hong, Yang Hong-Wei. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [4] Zhou Wen, Ji Ke, Chen He-Ming. Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal. Acta Physica Sinica, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [5] Tang De-Li, Sun Ai-Ping, Qui Xiao-Ming. . Acta Physica Sinica, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [6] Mo Jin-Jun, Yuan Nai-Chang, Liu Shao-Bin. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [7] Yuan Nai-Chang, Gu Chang-Qing, Zhou Jian-Jiang, Liu Shao-Bin. FDTD simulation for magnetized plasma photonic crystals. Acta Physica Sinica, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [8] Bo Yong, Zhao Qing, Luo Xian-Gang, Fan Jia, Liu Ying, Liu Jian-Wei. Experimental study of the communication performance of electromagnetic wave in time-varying and magnetized plasma channel. Acta Physica Sinica, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [9] Mo Jin-Jun, Yuan Nai-Chang, Liu Shao-Bin. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [10] Sheng Liang, Qiu Meng-Tong, Hei Dong-Wei, Qiu Ai-Ci, Cong Pei-Tian, Wang Liang-Ping, Wei Fu-Li. Research of implosion dynamics for wire array Z pinch. Acta Physica Sinica, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
  • Citation:
Metrics
  • Abstract views:  766
  • PDF Downloads:  480
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2012
  • Accepted Date:  17 October 2012
  • Published Online:  05 April 2013

Physical design of the "Ying-Guang 1" device

  • 1. Institute of Fluid Physics, CAEP, Mianyang 621900, China
Fund Project:  Project supported by the Development Foundation of China Academy of Engineering Physics (Grant No. 2011B0402009).

Abstract: "Ying-Guang 1" is a multi-bank pulsed power device for investigating the formation, confinement and instability of the high temperature and high density field-reversed configuration (FRC) plasma injector for the magnetized target fusion (MTF). This paper described the physical design of the "Ying-Guang 1" device which will be constructed in 2013 at the Institute of Fluid Physics, CAEP. Theoretical results show that the peak reversed current and magnetic field of this device are 1.5 MA and 4 T respectively with the rise time of 3 μ s. Based on the semi-empirical formula developed by Tuszewski the magnetized plasma of equilibrium density 6.6×1016 cm-3 and temperature (Ti+Te) ~ 300 eV could be achieved on the "Ying-Guang 1" device when the initially filled D2 gas pressure is about 50 mTorr, and the length of the FRC separatrix is 17 cm with a radius of 2 cm. The average ratio of the thermal pressure to magnetic pressure β is about 0.95, and the magnetic field embedded in plasma is 0.5 T. From the adiabatic compression scaling laws and the corresponding ignition conditions, the formated FRC plasma target of the "Ying-Guang 1" device approaches the necessity of the MTF if the radius compression ratio of the solid metal liner were set to 10.

Reference (16)

Catalog

    /

    返回文章
    返回