Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of bottom electrode on resistive switching characteristics of ZnO films

Li Hong-Xia Chen Xue-Ping Chen Qi Mao Qi-Nan Xi Jun-Hua Ji Zhen-Guo

Effects of bottom electrode on resistive switching characteristics of ZnO films

Li Hong-Xia, Chen Xue-Ping, Chen Qi, Mao Qi-Nan, Xi Jun-Hua, Ji Zhen-Guo
PDF
Get Citation
  • In this paper, thin films of ZnO were deposited on different bottom electrodes (BEs) by DC magnetron sputtering to fabricate resistive random access memory (ReRAM) with a W/ZnO/BEs structure. The effects of different BEs on the resistive switching characteristics of the fabricated device have been investigated. The results reveal that the devices fabricated on different BEs exhibit reversible and steady unipolar resistive switching behaviors. The conduction behavior in the low resistance state has an Ohmic behavior. However, the conduction mechanism in the high resistance state fits well with the classical space charge limited conduction. Schottky barrier heights between ZnO and different BEs have great effect on the operation voltages during the resistive switching processes. The resistances in low resistance state and the reset currents of the ZnO films fabricated on different BEs were discussed based on the filamentary model.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072015), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z4110503, LQ12F05001), and the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201223083).
    [1]

    Do Y H, Kwak J S, Bae Y C, Lee J H, Kim Y, Im H, Hong J P 2010 Curr. Appl. Phys. 10 E71

    [2]

    Waser R, Aono M 2007 Nat Mater 6 833

    [3]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [4]

    Ahn S E, Lee M J, Park Y, Kang B S, Lee C B, Kim KH, Seo S, Suh D S, Kim D C, Hur J, Stefanovich G, Yin H, Yoo I K, Lee J H, Park J B, Baek I G, Park B H 2008 Adv. Mater 20 924

    [5]

    Shi W,Tai Q, Xia X H,Yi M D, Xie L H, Fan Q L, Wang L H, Wei Ang, Huang W 2012 Chin. Phys. Lett. 29 087201

    [6]

    Gang J L, Li S L, Meng Y, Liao Z L, Liang X J, Chen D M 2009 Acta Phys. Sin. 58 5730 (in Chinese) [刚建雷, 黎松林, 孟 洋, 廖昭亮, 梁学锦, 陈东敏 2009 物理学报 58 5730]

    [7]

    Xing Z W, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27-31,2007,p46

    [9]

    Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J 2008 Appl. Phys. Lett. 92 022110

    [10]

    Jeong D S, Schroeder H, Waser R 2009 Phys. Rev. B 79 195317

    [11]

    Dong R, Lee D S, Pyun M B, Hasan M, Choi H J, Jo M S, Seong D J, Chang M, Heo S H, Lee J M, Park H K, Hwang H 2008 Appl. Phys. A-Mater. 93 409

    [12]

    Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H, Stefanovich G., Park Y, Yoo I K 2008 Appl. Phys. Lett. 93 042115

    [13]

    Liu K C, Tzeng W H, Chang K M, Chan Y C, Kuo C C, Cheng C W 2010 Microelectronics Reliability 50 670

    [14]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond Sci. Tech. 23 075019

    [15]

    Oh S C, Jung H Y, Lee H 2011 J. Appl. Phys. 109 124511

    [16]

    Kim W G, Rhee S W 2010 Microelectronic Engineering 87 98

    [17]

    YangY C, Pan F, Liu Q ,Liu M, Zeng F 2009 Nano. Lett. 9 1636

    [18]

    Chen G, Song C, Chen Ch, Gao Sh, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [19]

    Chen X M, Wu G H, Bao D H 2008 Appl. Phys. Lett. 93 093501

    [20]

    Pan F, Chen C, Wang Z S, Yang Y C, Yang J, Zeng F 2010 Progress in Natural Science: Materials International 20 01

    [21]

    Sundaram K B, Khan A 1997 J. Vac. Sci. Technol. A 15 428

    [22]

    Baldo M A, O'Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422

    [23]

    Alshareef H N, Quevedo-Lopez M A, Majhi P 2011 MRS BULL 36 90

  • [1]

    Do Y H, Kwak J S, Bae Y C, Lee J H, Kim Y, Im H, Hong J P 2010 Curr. Appl. Phys. 10 E71

    [2]

    Waser R, Aono M 2007 Nat Mater 6 833

    [3]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [4]

    Ahn S E, Lee M J, Park Y, Kang B S, Lee C B, Kim KH, Seo S, Suh D S, Kim D C, Hur J, Stefanovich G, Yin H, Yoo I K, Lee J H, Park J B, Baek I G, Park B H 2008 Adv. Mater 20 924

    [5]

    Shi W,Tai Q, Xia X H,Yi M D, Xie L H, Fan Q L, Wang L H, Wei Ang, Huang W 2012 Chin. Phys. Lett. 29 087201

    [6]

    Gang J L, Li S L, Meng Y, Liao Z L, Liang X J, Chen D M 2009 Acta Phys. Sin. 58 5730 (in Chinese) [刚建雷, 黎松林, 孟 洋, 廖昭亮, 梁学锦, 陈东敏 2009 物理学报 58 5730]

    [7]

    Xing Z W, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27-31,2007,p46

    [9]

    Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J 2008 Appl. Phys. Lett. 92 022110

    [10]

    Jeong D S, Schroeder H, Waser R 2009 Phys. Rev. B 79 195317

    [11]

    Dong R, Lee D S, Pyun M B, Hasan M, Choi H J, Jo M S, Seong D J, Chang M, Heo S H, Lee J M, Park H K, Hwang H 2008 Appl. Phys. A-Mater. 93 409

    [12]

    Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H, Stefanovich G., Park Y, Yoo I K 2008 Appl. Phys. Lett. 93 042115

    [13]

    Liu K C, Tzeng W H, Chang K M, Chan Y C, Kuo C C, Cheng C W 2010 Microelectronics Reliability 50 670

    [14]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond Sci. Tech. 23 075019

    [15]

    Oh S C, Jung H Y, Lee H 2011 J. Appl. Phys. 109 124511

    [16]

    Kim W G, Rhee S W 2010 Microelectronic Engineering 87 98

    [17]

    YangY C, Pan F, Liu Q ,Liu M, Zeng F 2009 Nano. Lett. 9 1636

    [18]

    Chen G, Song C, Chen Ch, Gao Sh, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [19]

    Chen X M, Wu G H, Bao D H 2008 Appl. Phys. Lett. 93 093501

    [20]

    Pan F, Chen C, Wang Z S, Yang Y C, Yang J, Zeng F 2010 Progress in Natural Science: Materials International 20 01

    [21]

    Sundaram K B, Khan A 1997 J. Vac. Sci. Technol. A 15 428

    [22]

    Baldo M A, O'Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422

    [23]

    Alshareef H N, Quevedo-Lopez M A, Majhi P 2011 MRS BULL 36 90

  • [1] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] Liu Wan-Xin, Chen Rui, Liu Yong-Jie, Wang Jun-Feng, Han Xiao-Tao, Yang Ming. A pulsed high magnetic field facility for electric polarization measurements. Acta Physica Sinica, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [3] Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin. Magnetotransport properties and stress control of HgCdTe thin film. Acta Physica Sinica, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [4] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [5] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [6] Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200021
    [7] The Influence of the magentic annealing temperature on the microstructure and magnetic properties of NiCu alloy film. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191942
  • Citation:
Metrics
  • Abstract views:  860
  • PDF Downloads:  967
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2012
  • Accepted Date:  27 November 2012
  • Published Online:  05 April 2013

Effects of bottom electrode on resistive switching characteristics of ZnO films

  • 1. Laboratory of Electronic Materials and Devices, Hangzhou Dianzi University, Hangzhou 310018, China;
  • 2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310013, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61072015), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z4110503, LQ12F05001), and the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201223083).

Abstract: In this paper, thin films of ZnO were deposited on different bottom electrodes (BEs) by DC magnetron sputtering to fabricate resistive random access memory (ReRAM) with a W/ZnO/BEs structure. The effects of different BEs on the resistive switching characteristics of the fabricated device have been investigated. The results reveal that the devices fabricated on different BEs exhibit reversible and steady unipolar resistive switching behaviors. The conduction behavior in the low resistance state has an Ohmic behavior. However, the conduction mechanism in the high resistance state fits well with the classical space charge limited conduction. Schottky barrier heights between ZnO and different BEs have great effect on the operation voltages during the resistive switching processes. The resistances in low resistance state and the reset currents of the ZnO films fabricated on different BEs were discussed based on the filamentary model.

Reference (23)

Catalog

    /

    返回文章
    返回