Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of an evanescent-coupled GeSi electro-absorption modulator based on Franz-Keldysh effect

Li Ya-Ming Liu Zhi Xue Chun-Lai Li Chuan-Bo Cheng Bu-Wen Wang Qi-Ming

Design of an evanescent-coupled GeSi electro-absorption modulator based on Franz-Keldysh effect

Li Ya-Ming, Liu Zhi, Xue Chun-Lai, Li Chuan-Bo, Cheng Bu-Wen, Wang Qi-Ming
PDF
Get Citation
  • We present a novel GeSi electro-absorption (EA) modulator design on a silicon-on-insulator platform. The GeSi EA modulator is constructed based on the Franz-Keldysh (FK) effect. The light is evanescent-coupled into the GeSi absorption layer from the rib Si waveguide. A contnet of 1.19% Si in SiGe absorption layer is chosen for C (1528–1560 nm) band operation. Simulation shows a high (3 dB) bandwidth of ~ 64 GHz and extinction ratio of 8.8 dB. Especially the insertion loss is as low as 2.7 dB.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, 60906035, 61177038), and the National High Technology Research and Development Program of China (Grant No. 2011AA010302).
    [1]

    Miller D 2000 Proc. IEEE 88 728

    [2]

    Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678

    [3]

    Reed G, Mashanovich G, Gardes F, Thomson D 2010 Nature Photonics 4 518

    [4]

    Xu Q, Schmidt B, Pradhan S, Lipson M 2005 Nature 435 325

    [5]

    Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M 2007 Optics Express 15 140

    [6]

    Feng N, Liao S, Feng D, Dong P, Zheng D, Liang H, Shafiiha H, Li G, Cunningham J, Krishnamoorthy A, Asghari M 2010 Opt. Express 18 7994

    [7]

    Liao L, Liu A, Rubin D, Basak J, Chetrit Y, Nguyen H, Cohen R, Izhaky N, Paniccia M 2007 Electronics Letters 43 (22)

    [8]

    陈少武, 余金中, 屠晓光 2006 物理 35 (04)

    [9]

    余金中, 孙飞 2005 物理 34 (01)

    [10]

    Thomson D, Gardes F, Fedeli J, Zlatanovic S, Myslivets E, Radic S, Mashanovich G, Reed G 2012 Photonic Technology Letters 24 234

    [11]

    Li Y, Hu W, Cheng B, Liu Z, Wang Q 2012 Chin. Phys. Lett. 29 (3)

    [12]

    Liu J, Pan D, Jongthammanurak S, Wada K, Kimerling L, Michel J 2007 Optics Express 15 623

    [13]

    Lim A, Liow T, Qing F, Duan N, Ding L, Yu M, Lo G, Kwong D 2011 Optics Express 19 5040

    [14]

    Feng N, Feng D, Liao S, Wang X, Dong P, Liang H, Kung C, Qian W, Fong J, Shafiiha R, Luo Y, Cunningham J, Krishnamoorthy A, Asghari M 2011 Optics Express 19 7062

    [15]

    Madelung O, Landolt-Börnstein 1982 Physics of Group IV Elements and III-V Compounds: Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin) 17a pp449-454

    [16]

    Levinshtein M, Rumyantsev S, Shur M 2001 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York) Chap.6

    [17]

    Pollak F, Cardona M 1968 Phys. Rev. 172 816

    [18]

    Miller D A B 2012 Optics Express 20 A293

  • [1]

    Miller D 2000 Proc. IEEE 88 728

    [2]

    Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678

    [3]

    Reed G, Mashanovich G, Gardes F, Thomson D 2010 Nature Photonics 4 518

    [4]

    Xu Q, Schmidt B, Pradhan S, Lipson M 2005 Nature 435 325

    [5]

    Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M 2007 Optics Express 15 140

    [6]

    Feng N, Liao S, Feng D, Dong P, Zheng D, Liang H, Shafiiha H, Li G, Cunningham J, Krishnamoorthy A, Asghari M 2010 Opt. Express 18 7994

    [7]

    Liao L, Liu A, Rubin D, Basak J, Chetrit Y, Nguyen H, Cohen R, Izhaky N, Paniccia M 2007 Electronics Letters 43 (22)

    [8]

    陈少武, 余金中, 屠晓光 2006 物理 35 (04)

    [9]

    余金中, 孙飞 2005 物理 34 (01)

    [10]

    Thomson D, Gardes F, Fedeli J, Zlatanovic S, Myslivets E, Radic S, Mashanovich G, Reed G 2012 Photonic Technology Letters 24 234

    [11]

    Li Y, Hu W, Cheng B, Liu Z, Wang Q 2012 Chin. Phys. Lett. 29 (3)

    [12]

    Liu J, Pan D, Jongthammanurak S, Wada K, Kimerling L, Michel J 2007 Optics Express 15 623

    [13]

    Lim A, Liow T, Qing F, Duan N, Ding L, Yu M, Lo G, Kwong D 2011 Optics Express 19 5040

    [14]

    Feng N, Feng D, Liao S, Wang X, Dong P, Liang H, Kung C, Qian W, Fong J, Shafiiha R, Luo Y, Cunningham J, Krishnamoorthy A, Asghari M 2011 Optics Express 19 7062

    [15]

    Madelung O, Landolt-Börnstein 1982 Physics of Group IV Elements and III-V Compounds: Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin) 17a pp449-454

    [16]

    Levinshtein M, Rumyantsev S, Shur M 2001 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York) Chap.6

    [17]

    Pollak F, Cardona M 1968 Phys. Rev. 172 816

    [18]

    Miller D A B 2012 Optics Express 20 A293

  • [1] Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu. Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon. Acta Physica Sinica, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [2] Feng Song, Xue Bin, Li Lian-Bi, Zhai Xue-Jun, Song Li-Xun, Zhu Chang-Jun. Analysis of Si/SiGe/Si double heterojunction band of a novelstructure of PIN electronic modulation. Acta Physica Sinica, 2016, 65(5): 054201. doi: 10.7498/aps.65.054201
    [3] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [4] Yin Wei-Hong, Han Qin, Yang Xiao-Hong. The progress of semiconductor photoelectric devices based on graphene. Acta Physica Sinica, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [5] ZHANG HONG-JUN, DAI JIAN-HUA, YANG JUN-HUI, GAO CUN-XIU. A BISTABLE LIQUID CRYSTAL ELECTRO-OPTIC MODULATOR. Acta Physica Sinica, 1981, 30(6): 810-819. doi: 10.7498/aps.30.810
    [6] Cao Tong-Tong, Zhang Li-Bin, Fei Yong-Hao, Cao Yan-Mei, Lei Xun, Chen Shao-Wu. Design of a high-speed silicon electro-optical modulator based on an add-drop micro-ring resonator. Acta Physica Sinica, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [7] Wu Dan-Dan, She Wei-Long. Optimal design of electrooptic modulator of biaxial crystal. Acta Physica Sinica, 2005, 54(1): 134-138. doi: 10.7498/aps.54.134
    [8] Chen Jian-Jun, Li Zhi, Zhang Jia-Sen, Gong Qi-Huang. Surface plasmon polariton modulator based on electro-optic polymer. Acta Physica Sinica, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [9] TAI REN-ZHONO, LU FU-YUN, YUAN SHU-ZHONG, GUAN XIN-AN, LI BING. ELECTRO-OPTIC EFFECT IN PESO ACOUSTO-OPTIC MODULATOR. Acta Physica Sinica, 1992, 41(6): 1012-1018. doi: 10.7498/aps.41.1012
    [10] Wang Heng, Zhang Shang-Jian, Zou Xin-Hai, Liu Jun-Wei, Zhang Ya-Li, Li He-Ping, Liu Yong. Two-tone optical heterodyning method for the self-calibrated measurement of half-wave voltage of electrooptic phase modulator. Acta Physica Sinica, 2015, 64(12): 124211. doi: 10.7498/aps.64.124211
  • Citation:
Metrics
  • Abstract views:  932
  • PDF Downloads:  1082
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2012
  • Accepted Date:  19 February 2013
  • Published Online:  05 June 2013

Design of an evanescent-coupled GeSi electro-absorption modulator based on Franz-Keldysh effect

  • 1. Institute State Key Laboratory on Integrated Optoelectronics, institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, 60906035, 61177038), and the National High Technology Research and Development Program of China (Grant No. 2011AA010302).

Abstract: We present a novel GeSi electro-absorption (EA) modulator design on a silicon-on-insulator platform. The GeSi EA modulator is constructed based on the Franz-Keldysh (FK) effect. The light is evanescent-coupled into the GeSi absorption layer from the rib Si waveguide. A contnet of 1.19% Si in SiGe absorption layer is chosen for C (1528–1560 nm) band operation. Simulation shows a high (3 dB) bandwidth of ~ 64 GHz and extinction ratio of 8.8 dB. Especially the insertion loss is as low as 2.7 dB.

Reference (18)

Catalog

    /

    返回文章
    返回