搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型Si/SiGe/Si双异质结PIN电学调制结构的异质结能带分析

冯松 薛斌 李连碧 翟学军 宋立勋 朱长军

一种新型Si/SiGe/Si双异质结PIN电学调制结构的异质结能带分析

冯松, 薛斌, 李连碧, 翟学军, 宋立勋, 朱长军
PDF
导出引用
  • PIN结构是电光调制器中常见的一种电学调制结构, 该结构中载流子注入效率直接影响着电光调制器的性能. 在前期的研究中, 我们在SOI材料的基础上提出了一种新型Si/SiGe/Si双异质结PIN电学调制结构, 可以有效提高载流子注入效率, 降低调制功耗. 为了进一步研究这种新型调制器结构的调制机理, 本文从单异质结能带理论出发, 定量分析了该新型结构中双异质结的势垒高度变化, 给出了双异质结势垒高度的定量公式, 将新型结构与SiGe-OI和SOI两种PIN电学调制结构进行能带对比, 分析了该新型结构载流子注入增强的原因, 最后模拟了新型结构的能带分布, 以及能带和调制电压与注入载流子密度的关系, 并与SiGe-OI和SOI两种PIN电学调制结构进行对比发现, 1 V调制电压下, 新型结构的载流子密度达到了8× 1018cm-3, 比SOI 结构的载流子密度高了800%, 比SiGe-OI结构的载流子密度高了340%, 进一步说明了该新型结构的优越性, 并且验证了理论分析的正确性.
      通信作者: 冯松, vonfengs@163.com
    • 基金项目: 国家自然科学基金(批准号: 61204080)、陕西省教育厅科研计划(批准号: 15JK1292)、 西安工程大学博士科研启动基金(批准号: BS1128, BS1436)、西安工程大学研究生教育“质量工程”项目(批准号: 15yzl10)和陕西省普通高校重点学科建设专项资金建设项目(批准号: (2008) 169)资助的课题.
    [1]

    Yang L, Ding J F 2014 J. Lightwave Technol. 32 966

    [2]

    Xu H, Li X Y, Xiao X 2014 IEEE J. Sel. TOP. Quant. 20 3400110

    [3]

    Liu Y, Yu B, He B, Zhang G F, Xiao L T, Jia S T 2014 Chin. Phys. B 23 010101

    [4]

    Chen M J, Cheng J, Li M Q, Xiao Y 2012 Chin. Phys. B 21 064212

    [5]

    Liang S, Mei Z X, Du X L 2012 Chin. Phys. B 21 067306

    [6]

    Hua W, Liu S X 2014 Chin. Phys. B 23 020309

    [7]

    Akiyama S, Imai M, Baba, T Png 2013 IEEE J. Sel. TOP. Quant. 19 3401611

    [8]

    Qiu C, Xiao S, Yang B 2013 Optik 124 3436

    [9]

    Liu A, Jones R, Liao L 2014 Nature 4 615

    [10]

    Tu X, Zuo Y, Chen S 2008 Laser Phys. 18 438

    [11]

    Wu P, Clarke R E, Novak J 2013 IEEE J. Sel. TOP. Quant. 19 7900109

    [12]

    Rouifed M S 2014 IEEE J. Sel. TOP. Quant. 20 3400207

    [13]

    Li Y M, Liu Z, Xue C L 2013 Acta Phys. Sin. 62 114208 (in Chinese) [李亚明, 刘智, 薛春来 2013 物理学报 62 114208]

    [14]

    Feng S, Gao Y 2014 Chin J. Semiconductors 35 074010

    [15]

    Feng S, Jiang R K, Gao Y 2014 International Coference on Photonics and Optical Engineering, Xi'an, China, October 13-15, 2014 CP300-294

    [16]

    Feng S, Jiang R K, Gao Y 2014 International Conference on Optical Communications and Networks, Suzhou, China, November 9-10, 2014 6987152

    [17]

    Feng S Chinese Patent 2015105629372[P] [2015-9-8] (in Chinese) [冯松, 中国专刊 2015105629372[P] [2015-9-8]]

    [18]

    Rickman A 2014 Nat. Photonics 8 579

    [19]

    Gao Y, Feng S, Yang Y 2008 The 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, China, October 10-13, 2008 p1058

    [20]

    Feng S, Gao Y 2014 Journal of Optoelectronics· Laser 25 870 (in Chinese) [冯松, 高勇 2014 光电子激光 25 870]

    [21]

    Chang Y M, Dai C L, Cheng T C 2008 Appl. Surf. Sci. 254 3105

    [22]

    Xing Y R 1985 Chinese Journal of Semiconductors 6 362 (in Chinese) [邢益荣 1985 半导体学报 6 362]

    [23]

    People R, Bean J C 1986 Appl. Phys. Lett. 48 538

    [24]

    Liu E K 2008 Semiconductor Physics (Vol. 5) (Beijing: Publishing House Of Electronics Industry) p185 (in Chinese) [刘恩科 2008 半导体物理学 (北京: 电子工业出版社) 第185页]

  • [1]

    Yang L, Ding J F 2014 J. Lightwave Technol. 32 966

    [2]

    Xu H, Li X Y, Xiao X 2014 IEEE J. Sel. TOP. Quant. 20 3400110

    [3]

    Liu Y, Yu B, He B, Zhang G F, Xiao L T, Jia S T 2014 Chin. Phys. B 23 010101

    [4]

    Chen M J, Cheng J, Li M Q, Xiao Y 2012 Chin. Phys. B 21 064212

    [5]

    Liang S, Mei Z X, Du X L 2012 Chin. Phys. B 21 067306

    [6]

    Hua W, Liu S X 2014 Chin. Phys. B 23 020309

    [7]

    Akiyama S, Imai M, Baba, T Png 2013 IEEE J. Sel. TOP. Quant. 19 3401611

    [8]

    Qiu C, Xiao S, Yang B 2013 Optik 124 3436

    [9]

    Liu A, Jones R, Liao L 2014 Nature 4 615

    [10]

    Tu X, Zuo Y, Chen S 2008 Laser Phys. 18 438

    [11]

    Wu P, Clarke R E, Novak J 2013 IEEE J. Sel. TOP. Quant. 19 7900109

    [12]

    Rouifed M S 2014 IEEE J. Sel. TOP. Quant. 20 3400207

    [13]

    Li Y M, Liu Z, Xue C L 2013 Acta Phys. Sin. 62 114208 (in Chinese) [李亚明, 刘智, 薛春来 2013 物理学报 62 114208]

    [14]

    Feng S, Gao Y 2014 Chin J. Semiconductors 35 074010

    [15]

    Feng S, Jiang R K, Gao Y 2014 International Coference on Photonics and Optical Engineering, Xi'an, China, October 13-15, 2014 CP300-294

    [16]

    Feng S, Jiang R K, Gao Y 2014 International Conference on Optical Communications and Networks, Suzhou, China, November 9-10, 2014 6987152

    [17]

    Feng S Chinese Patent 2015105629372[P] [2015-9-8] (in Chinese) [冯松, 中国专刊 2015105629372[P] [2015-9-8]]

    [18]

    Rickman A 2014 Nat. Photonics 8 579

    [19]

    Gao Y, Feng S, Yang Y 2008 The 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, China, October 10-13, 2008 p1058

    [20]

    Feng S, Gao Y 2014 Journal of Optoelectronics· Laser 25 870 (in Chinese) [冯松, 高勇 2014 光电子激光 25 870]

    [21]

    Chang Y M, Dai C L, Cheng T C 2008 Appl. Surf. Sci. 254 3105

    [22]

    Xing Y R 1985 Chinese Journal of Semiconductors 6 362 (in Chinese) [邢益荣 1985 半导体学报 6 362]

    [23]

    People R, Bean J C 1986 Appl. Phys. Lett. 48 538

    [24]

    Liu E K 2008 Semiconductor Physics (Vol. 5) (Beijing: Publishing House Of Electronics Industry) p185 (in Chinese) [刘恩科 2008 半导体物理学 (北京: 电子工业出版社) 第185页]

  • [1] 曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武. 基于Add-drop型微环谐振腔的硅基高速电光调制器设计. 物理学报, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [2] 李亚明, 刘智, 薛春来, 李传波, 成步文, 王启明. 基于Franz-Keldysh效应的倏逝波锗硅电吸收调制器设计. 物理学报, 2013, 62(11): 114208. doi: 10.7498/aps.62.114208
    [3] 王霆, 张建军, Huiyun Liu. 硅基III-V族量子点激光器的发展现状和前景. 物理学报, 2015, 64(20): 204209. doi: 10.7498/aps.64.204209
    [4] 吴丹丹, 佘卫龙. 双轴晶体电光调制器的最优设计. 物理学报, 2005, 54(1): 134-138. doi: 10.7498/aps.54.134
    [5] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [6] 曹 霞, 秦海燕, 成丽华. SiO2脊形条波导热极化引起的电光效应. 物理学报, 2006, 55(10): 5283-5287. doi: 10.7498/aps.55.5283
    [7] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [8] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [9] 徐世宏, 徐彭寿, 班大雁, 方容川, 杨风源, 袁诗鑫. Ge/ZnSe(100)异质结能带偏移的同步辐射光电子能谱研究. 物理学报, 1997, 46(3): 587-595. doi: 10.7498/aps.46.587
    [10] 蔡春锋, 张兵坡, 黎瑞锋, 徐天宁, 毕岗, 吴惠桢, 张文华, 朱俊发. 利用同步辐射光电子能谱技术测量ZnO/PbTe异质结的能带带阶. 物理学报, 2014, 63(16): 167301. doi: 10.7498/aps.63.167301
    [11] 戴显英, 金国强, 董洁琼, 王船宝, 赵娴, 楚亚萍, 奚鹏程, 邓文洪, 张鹤鸣, 郝跃. 锗硅/硅异质结材料的化学气相淀积生长动力学模型. 物理学报, 2011, 60(6): 065101. doi: 10.7498/aps.60.065101
    [12] 张洪钧, 戴建华, 杨君慧, 高存秀. 双稳液晶电光调制器. 物理学报, 1981, 30(6): 810-819. doi: 10.7498/aps.30.810
    [13] 陈张海, 胡灿明, 刘普霖, 史国良, 沈学础. GaAs/AlGaAs异质结中二维电子气子能带的Landau能级耦合. 物理学报, 1998, 47(3): 494-501. doi: 10.7498/aps.47.494
    [14] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [15] 刘静, 郭飞, 高勇. 超结硅锗碳异质结双极晶体管机理研究与特性分析优化. 物理学报, 2014, 63(4): 048501. doi: 10.7498/aps.63.048501
    [16] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究. 物理学报, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [17] 杨红官, 施毅, 闾锦, 濮林, 张荣, 郑有. 锗/硅异质纳米结构中空穴存储特性研究. 物理学报, 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
    [18] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究. 物理学报, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [19] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [20] 洪霞, 郭雄彬, 方旭, 李衎, 叶辉. 基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究. 物理学报, 2013, 62(17): 178502. doi: 10.7498/aps.62.178502
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1121
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-27
  • 修回日期:  2015-11-17
  • 刊出日期:  2016-03-05

一种新型Si/SiGe/Si双异质结PIN电学调制结构的异质结能带分析

  • 1. 西安工程大学理学院, 西安 710048
  • 通信作者: 冯松, vonfengs@163.com
    基金项目: 

    国家自然科学基金(批准号: 61204080)、陕西省教育厅科研计划(批准号: 15JK1292)、 西安工程大学博士科研启动基金(批准号: BS1128, BS1436)、西安工程大学研究生教育“质量工程”项目(批准号: 15yzl10)和陕西省普通高校重点学科建设专项资金建设项目(批准号: (2008) 169)资助的课题.

摘要: PIN结构是电光调制器中常见的一种电学调制结构, 该结构中载流子注入效率直接影响着电光调制器的性能. 在前期的研究中, 我们在SOI材料的基础上提出了一种新型Si/SiGe/Si双异质结PIN电学调制结构, 可以有效提高载流子注入效率, 降低调制功耗. 为了进一步研究这种新型调制器结构的调制机理, 本文从单异质结能带理论出发, 定量分析了该新型结构中双异质结的势垒高度变化, 给出了双异质结势垒高度的定量公式, 将新型结构与SiGe-OI和SOI两种PIN电学调制结构进行能带对比, 分析了该新型结构载流子注入增强的原因, 最后模拟了新型结构的能带分布, 以及能带和调制电压与注入载流子密度的关系, 并与SiGe-OI和SOI两种PIN电学调制结构进行对比发现, 1 V调制电压下, 新型结构的载流子密度达到了8× 1018cm-3, 比SOI 结构的载流子密度高了800%, 比SiGe-OI结构的载流子密度高了340%, 进一步说明了该新型结构的优越性, 并且验证了理论分析的正确性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回