搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅团簇自旋电子器件的理论研究

黄耀清 郝成红 郑继明 任兆玉

硅团簇自旋电子器件的理论研究

黄耀清, 郝成红, 郑继明, 任兆玉
PDF
导出引用
导出核心图
  • 利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号:20106101110017)、上海市教委科研项目(批准号:060Z018)、陕西省自然科学基金(批准号:2009JQ1004)、陕西省教育厅专项基金(批准号:08JK471)和西北大学陕西省光电技术与功能材料省部共建国家重点实验室培育基地开放基金(批准号:zs12022)资助的课题.
    [1]

    Reed M A, Zhou C 1997 Science 278 252

    [2]

    Venkataraman L, Klare J E 2006 Nature 442 904

    [3]

    Quinn J R, Foss F W 2007 J. Am. Chem. Soc. 129 6714

    [4]

    Venkataraman L, Klare J E 2006 Nano Lett. 6 458

    [5]

    Dadosh T, Gordin Y 2005 Nature 436 677

    [6]

    Igor Ž, Jaroslav F, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [7]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [8]

    Rocha A R, Víctor M G, Steve W B, Colin J L, Jaime F, Stefano S 2005 Nat. Mater. 4 335

    [9]

    Salvador B L, Mihajlo V, Markus K, Chou M Y 2010 Phys. Rev. Lett. 104 076807

    [10]

    Petta J R, Slater S K, Ralph D C 2004 Phys. Rev. Lett. 96 136601.

    [11]

    Zheng X L, Zheng J M, Ren Z Y, Guo P, Tian J S, Bai J T 2009 Acta Phys. Sin. 58 5709 (in Chinese) [郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛 2009 物理学报 58 5709]

    [12]

    Dai Z X, Zheng X H, Shi X Q, Zeng Z 2005 Phys. Rev. B 72 205408

    [13]

    Ling Z K, James R C 2008 Phys. Rev. B 77 073401

    [14]

    Khanna S N, Rao B K, Jena P 2002 Phys. Rev. Lett. 89 016803

    [15]

    Hagelberg F, Xiao C, William Jr A L 2003 Phys. Rev. B 67 035426

    [16]

    Hidefumi H, Takehide M, Toshihiko K 2001 Phys. Rev. Lett. 86 1733

    [17]

    Desmicht R, Faini G, Cros, V, Fert A, Petroff F, Vaure's A 1998 Appl. Phys. Lett. 72 386

    [18]

    Sordan R, Balasubramanian K, Burghard M, Kern K 2005 Appl. Phys. Lett. 87 013106

    [19]

    Bernand M A, Seneor P, Lidgi N, Muñoz M, Cros V, Fusil S, Bouzehouane K, Deranlot C, Vaures A, Petroff F, Fert A 2006 Appl. Phys. Lett. 89 062502

    [20]

    Chen H 2007 Physics 36 910 (in Chinese) [陈灏 2007 物理 36 910]

    [21]

    Han R S 2010 Physics 39 753 (in Chinese) [韩汝珊 2010 物理 39 753]

    [22]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [23]

    Zhao Y, Hu Y, Liu L, Zhu Y, Hong G 2011 Nano Lett. 11 2088

    [24]

    Bin W, Jian W 2011 Phys. Rev. B 84 165401

    [25]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [26]

    Datta S 2005 Quantum Transport:Atom to Transistor (Cambridge:Cambridge University Press)

    [27]

    Zheng J M 2008 Ph. D. Dissertation (Xian:Northwest University) (in Chinese) [郑继明 2008 博士学位论文(西安:西北大学)]

    [28]

    Reveles J U, Clayborne P A, Reber A C, Khanna S N, Pradhan K, Sen P, Pederson M R 2009 Nat. Chem. 1 310

  • [1]

    Reed M A, Zhou C 1997 Science 278 252

    [2]

    Venkataraman L, Klare J E 2006 Nature 442 904

    [3]

    Quinn J R, Foss F W 2007 J. Am. Chem. Soc. 129 6714

    [4]

    Venkataraman L, Klare J E 2006 Nano Lett. 6 458

    [5]

    Dadosh T, Gordin Y 2005 Nature 436 677

    [6]

    Igor Ž, Jaroslav F, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [7]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [8]

    Rocha A R, Víctor M G, Steve W B, Colin J L, Jaime F, Stefano S 2005 Nat. Mater. 4 335

    [9]

    Salvador B L, Mihajlo V, Markus K, Chou M Y 2010 Phys. Rev. Lett. 104 076807

    [10]

    Petta J R, Slater S K, Ralph D C 2004 Phys. Rev. Lett. 96 136601.

    [11]

    Zheng X L, Zheng J M, Ren Z Y, Guo P, Tian J S, Bai J T 2009 Acta Phys. Sin. 58 5709 (in Chinese) [郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛 2009 物理学报 58 5709]

    [12]

    Dai Z X, Zheng X H, Shi X Q, Zeng Z 2005 Phys. Rev. B 72 205408

    [13]

    Ling Z K, James R C 2008 Phys. Rev. B 77 073401

    [14]

    Khanna S N, Rao B K, Jena P 2002 Phys. Rev. Lett. 89 016803

    [15]

    Hagelberg F, Xiao C, William Jr A L 2003 Phys. Rev. B 67 035426

    [16]

    Hidefumi H, Takehide M, Toshihiko K 2001 Phys. Rev. Lett. 86 1733

    [17]

    Desmicht R, Faini G, Cros, V, Fert A, Petroff F, Vaure's A 1998 Appl. Phys. Lett. 72 386

    [18]

    Sordan R, Balasubramanian K, Burghard M, Kern K 2005 Appl. Phys. Lett. 87 013106

    [19]

    Bernand M A, Seneor P, Lidgi N, Muñoz M, Cros V, Fusil S, Bouzehouane K, Deranlot C, Vaures A, Petroff F, Fert A 2006 Appl. Phys. Lett. 89 062502

    [20]

    Chen H 2007 Physics 36 910 (in Chinese) [陈灏 2007 物理 36 910]

    [21]

    Han R S 2010 Physics 39 753 (in Chinese) [韩汝珊 2010 物理 39 753]

    [22]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [23]

    Zhao Y, Hu Y, Liu L, Zhu Y, Hong G 2011 Nano Lett. 11 2088

    [24]

    Bin W, Jian W 2011 Phys. Rev. B 84 165401

    [25]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [26]

    Datta S 2005 Quantum Transport:Atom to Transistor (Cambridge:Cambridge University Press)

    [27]

    Zheng J M 2008 Ph. D. Dissertation (Xian:Northwest University) (in Chinese) [郑继明 2008 博士学位论文(西安:西北大学)]

    [28]

    Reveles J U, Clayborne P A, Reber A C, Khanna S N, Pradhan K, Sen P, Pederson M R 2009 Nat. Chem. 1 310

  • [1] 潘军廷, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191934
    [2] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [3] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制. 物理学报, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [4] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [5] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [6] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [7] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [8] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
  • 引用本文:
    Citation:
计量
  • 文章访问数:  750
  • PDF下载量:  470
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2012-12-23
  • 刊出日期:  2013-04-20

硅团簇自旋电子器件的理论研究

  • 1. 上海应用技术学院理学院, 上海 201418;
  • 2. 西北大学光子学与光子技术研究所, 西安 710069
    基金项目: 

    高等学校博士学科点专项科研基金(批准号:20106101110017)、上海市教委科研项目(批准号:060Z018)、陕西省自然科学基金(批准号:2009JQ1004)、陕西省教育厅专项基金(批准号:08JK471)和西北大学陕西省光电技术与功能材料省部共建国家重点实验室培育基地开放基金(批准号:zs12022)资助的课题.

摘要: 利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回