Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effect of pressure on thermal decomposition of solid nitromethane via MD simulation

Zhang Li Chen Lang

The effect of pressure on thermal decomposition of solid nitromethane via MD simulation

Zhang Li, Chen Lang
PDF
Get Citation
  • The thermal decomposition of solid nitromethane (NM) is studied by ReaxFF molecular dynamics simulations to obtain the time evolution of the mechanism of NM under high temperature and pressure. It is determined that the initial decomposition mechanism of NM is dependent on pressure effect. In the 0–3 GPa pressure regime, the initial reactions is the C–N bond dissociation and the unimolecular rearrangement connecting between NM and methyl nitrite isomers; in the 4–7 GPa, the initial pathways of NM are the intermolecular proton transfer and C–N, C–O bond rupture. In the secondary reactions step, several fragments, like H2O, NO, NO2, HONO, play a role of catalysis. The product decomposition of NM contains many different structures of carbon clusters, and the configuration of cluster is dependent on pressure.
    [1]

    Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72

    [2]

    Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351

    [3]

    Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667

    [4]

    Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33

    [5]

    Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395

    [6]

    Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113

    [7]

    Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1

    [8]

    Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [9]

    Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462

    [10]

    Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237

    [11]

    Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 物理学报 58 4144]

    [12]

    Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407

    [13]

    Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72

    [14]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [15]

    Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011

    [16]

    Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077

    [17]

    van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534

    [19]

    Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514

    [20]

    Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181

    [21]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [22]

    Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996

    [23]

    Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675

    [24]

    Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261

    [25]

    Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384

    [26]

    Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302

    [27]

    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964

    [28]

    Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024

    [29]

    Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961

    [30]

    Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301

    [31]

    Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [32]

    Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516

    [33]

    Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57

    [34]

    Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]

    [35]

    Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301

    [36]

    Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [37]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [38]

    Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [39]

    Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619

    [40]

    Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 物理学报 54 2847]

    [41]

    Ornellas D L1968 J. Phys. Chem. 72 2390

  • [1]

    Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72

    [2]

    Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351

    [3]

    Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667

    [4]

    Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33

    [5]

    Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395

    [6]

    Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113

    [7]

    Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1

    [8]

    Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [9]

    Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462

    [10]

    Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237

    [11]

    Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 物理学报 58 4144]

    [12]

    Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407

    [13]

    Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72

    [14]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [15]

    Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011

    [16]

    Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077

    [17]

    van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534

    [19]

    Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514

    [20]

    Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181

    [21]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [22]

    Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996

    [23]

    Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675

    [24]

    Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261

    [25]

    Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384

    [26]

    Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302

    [27]

    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964

    [28]

    Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024

    [29]

    Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961

    [30]

    Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301

    [31]

    Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [32]

    Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516

    [33]

    Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57

    [34]

    Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]

    [35]

    Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301

    [36]

    Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [37]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [38]

    Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [39]

    Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619

    [40]

    Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 物理学报 54 2847]

    [41]

    Ornellas D L1968 J. Phys. Chem. 72 2390

  • [1] Xu Jing-Cheng, Zhao Ji-Jun. First-principles study of thermal decomposition of liquid nitromethane and its compressive effect. Acta Physica Sinica, 2009, 58(6): 4144-4149. doi: 10.7498/aps.58.4144
    [2] Peng Ya-Jing, Liu Yu-Qiang, Wang Ying-Hui, Zhang Shu-Ping, Yang Yan-Qiang. Thermal dynamic analysis of picosecond and nanosecond single pulse laser flash-heating of Al/NC nanoenergetic composites. Acta Physica Sinica, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [3] Wei Wen-Zhe, Guo Xiang, Liu Ke, Wang Yi, Luo Zi-Jiang, Zhou Qing, Wang Ji-Hong, Ding Zhao. Thermodynamic study on two-step desorption of oxides on InAs(001) surface. Acta Physica Sinica, 2013, 62(22): 226801. doi: 10.7498/aps.62.226801
    [4] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Tang Liang-Guang, Fan Shuan-Shi. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation. Acta Physica Sinica, 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [5] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Li Zhi-Bao. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation in conjunction with chemical injection method. Acta Physica Sinica, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [6] Zheng Li-Juan, Cheng Tian-Hai, Wu Yu. Effect of aggregated black carbon aging on infrared absorption and longwave radiative forcing. Acta Physica Sinica, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [7] Li Peng, Ning Xi-Jing, Wang Yin. Molecular dynamics study on self-assembly of C36 clusters. Acta Physica Sinica, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [8] Liu Hai-Tao, Wang Xiao-Lu, Yuan Zhe, He Chun-Long, Li Jia-Ming. First-principle molecular dynamics study of clusters:optimum valence bond scheme. Acta Physica Sinica, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [9] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [10] Xie Zhao, Hou Qing, Wang Jun, Sun Tie-Ying, Long Xing-Gui, Luo Shun-Zhong. Coalescence of helium clusters in titanium crystals: Molecular dynamics simulation. Acta Physica Sinica, 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [11] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [12] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [13] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [14] Ye Zi-Yan, Zhang Qing-Yu. Moleculardynamicssimulationsoflow energyPtclusterdeposition. Acta Physica Sinica, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [15] Wang JianWang, Shao-Qing. Tight-binding molecular-dynamics study of melting behaviour of small silicon clu sters. Acta Physica Sinica, 2003, 52(11): 2854-2858. doi: 10.7498/aps.52.2854
    [16] Li Ming-Lin, Lin Fan, Chen Yue. Study on the mechanical properties of carbon nanocones using molecular dynamics simulation. Acta Physica Sinica, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [17] Zhang Li-Juan, Ge Pei-Wen, Su Shao-Kui, Wang Yun-Ping, Liu Ying. Thermal analysis and structure transformation of Mn12-Ac magnetic molecular crystals. Acta Physica Sinica, 2004, 53(11): 4015-4020. doi: 10.7498/aps.53.4015
    [18] Wen Yu-Hua, Yang Quan-Wen, Zhu Ru-Zeng. Molecular dynamics study on the energy characteristic of copper nanoclusters at room temperature and during heating. Acta Physica Sinica, 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [19] Zhang Lin, Zhang Cai-Bei, Qi Yang, Xu Song-Ning. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [20] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
  • Citation:
Metrics
  • Abstract views:  807
  • PDF Downloads:  1172
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2013
  • Accepted Date:  03 May 2013
  • Published Online:  05 July 2013

The effect of pressure on thermal decomposition of solid nitromethane via MD simulation

  • 1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract: The thermal decomposition of solid nitromethane (NM) is studied by ReaxFF molecular dynamics simulations to obtain the time evolution of the mechanism of NM under high temperature and pressure. It is determined that the initial decomposition mechanism of NM is dependent on pressure effect. In the 0–3 GPa pressure regime, the initial reactions is the C–N bond dissociation and the unimolecular rearrangement connecting between NM and methyl nitrite isomers; in the 4–7 GPa, the initial pathways of NM are the intermolecular proton transfer and C–N, C–O bond rupture. In the secondary reactions step, several fragments, like H2O, NO, NO2, HONO, play a role of catalysis. The product decomposition of NM contains many different structures of carbon clusters, and the configuration of cluster is dependent on pressure.

Reference (41)

Catalog

    /

    返回文章
    返回