Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors

Bi Chang-Hong Meng Qing-Yu

Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors

Bi Chang-Hong, Meng Qing-Yu
PDF
Get Citation
  • The scheelite-structured CaWO4 phosphors doped with different concentrations of Sm3+ were prepared by precipitation method. Photoluminescence properties of Sm3+-doped CaWO4 samples were studied. Results indicate that red light emission of Sm3+ with higher color purity in the samples can be excited by 404 nm blue light. There are 4f-4f intrinsic emission of Sm3+ and a strong self-excitation emission of CaWO4 when excited by 240 nm short-wave ultraviolet, and the white light emission can be obtained. Experiments show that the best Sm3+ doping concentration is 2%. The energy transfer type between Sm3+ ions was determined to be the electric dipole-electric dipole interaction and the critical energy transfer distance (Dc) was calculated to be 2.0 nm.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51002041), the Foundation for Young Key Scholars of Higher Education Institution of Heilongjiang Province, China (Grant No. 1252G032), and the Foundation for Young Key Scholars of Harbin Normal University (Grant No. 11KXQ-06).
    [1]

    Ryu J H, Bang S Y, Kim W S, Park G S, Kim K M, Yoon J W, Shim K B, Koshizaki N 2007 J. Alloys Compd. 441 146

    [2]

    Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏 2010 物理学报 59 1321]

    [3]

    Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longa E 2007 Chem. Phys. 334 180

    [4]

    Feng X H, Meng Q Y, Sun J T, L S C 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣 2011 物理学报 60 037806]

    [5]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [6]

    Kodaira C A, Britoa H F, Malta O L, Serrac O A 2003 J. Lumin 101 11

    [7]

    Jia P Y, Liu X M, M Yu, Luo Y, Fang J, Lin J 2006 Chem Phys Lett. 424 358

    [8]

    Kodaira C A, Brito H F., Felinto M C F C 2003 J. Solid State Chem. 171 401

    [9]

    Tian Y, Chen B J, Yu H Q, Hua R N 2011 J. Colloid Interface Sci. 360 586

    [10]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [11]

    Yang H M, Wang Z L, Gong M L, Liang H B 2009 J. Alloys Compd. 488 331

    [12]

    Li C X, Lin C K, Liu X M, Lin J 2008 J. Nanosci. Nanotechnol. 8 1183

    [13]

    Xia Z G, Chen D M 2010 J. Am. Ceram. Soc. 93 1397

    [14]

    Tian Y, Liu Y, Hua R N, Na L Y, Chen B J 2012 Mater. Res. Bull. 47 59

    [15]

    Jin Y Hao Z D Zhang X, Luo Y S, Wang X J, Zhang J H 2011 Opt. Mater. 33 1591

    [16]

    Huang S H, Lou L R 1990 Chin. J. Lumin 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [17]

    Meng Q Y, Chen B J, Xu W, Yang Y M 2007 J. Appl. Phys. 102 093505

    [18]

    Tian Y, Chen B J, Tian B N, Hua R N, Sun J S 2011 J. Alloys Compd. 509 6096

    [19]

    Suhasini T, Kumar J S, Sasikala T, Jang K, Lee H S, Jayasimhadri M, Jeong J H, Yi S S, Moorthy L R 2009 Opt. Mater. 31 1167

    [20]

    Inokuti M, Hirayama F 1965 J. Chem. Phys. 43 1978

    [21]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1]

    Ryu J H, Bang S Y, Kim W S, Park G S, Kim K M, Yoon J W, Shim K B, Koshizaki N 2007 J. Alloys Compd. 441 146

    [2]

    Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏 2010 物理学报 59 1321]

    [3]

    Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longa E 2007 Chem. Phys. 334 180

    [4]

    Feng X H, Meng Q Y, Sun J T, L S C 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣 2011 物理学报 60 037806]

    [5]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [6]

    Kodaira C A, Britoa H F, Malta O L, Serrac O A 2003 J. Lumin 101 11

    [7]

    Jia P Y, Liu X M, M Yu, Luo Y, Fang J, Lin J 2006 Chem Phys Lett. 424 358

    [8]

    Kodaira C A, Brito H F., Felinto M C F C 2003 J. Solid State Chem. 171 401

    [9]

    Tian Y, Chen B J, Yu H Q, Hua R N 2011 J. Colloid Interface Sci. 360 586

    [10]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [11]

    Yang H M, Wang Z L, Gong M L, Liang H B 2009 J. Alloys Compd. 488 331

    [12]

    Li C X, Lin C K, Liu X M, Lin J 2008 J. Nanosci. Nanotechnol. 8 1183

    [13]

    Xia Z G, Chen D M 2010 J. Am. Ceram. Soc. 93 1397

    [14]

    Tian Y, Liu Y, Hua R N, Na L Y, Chen B J 2012 Mater. Res. Bull. 47 59

    [15]

    Jin Y Hao Z D Zhang X, Luo Y S, Wang X J, Zhang J H 2011 Opt. Mater. 33 1591

    [16]

    Huang S H, Lou L R 1990 Chin. J. Lumin 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [17]

    Meng Q Y, Chen B J, Xu W, Yang Y M 2007 J. Appl. Phys. 102 093505

    [18]

    Tian Y, Chen B J, Tian B N, Hua R N, Sun J S 2011 J. Alloys Compd. 509 6096

    [19]

    Suhasini T, Kumar J S, Sasikala T, Jang K, Lee H S, Jayasimhadri M, Jeong J H, Yi S S, Moorthy L R 2009 Opt. Mater. 31 1167

    [20]

    Inokuti M, Hirayama F 1965 J. Chem. Phys. 43 1978

    [21]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [2] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [3] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [6] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [7] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [8] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • Citation:
Metrics
  • Abstract views:  876
  • PDF Downloads:  608
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2013
  • Accepted Date:  21 June 2013
  • Published Online:  05 October 2013

Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors

  • 1. Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51002041), the Foundation for Young Key Scholars of Higher Education Institution of Heilongjiang Province, China (Grant No. 1252G032), and the Foundation for Young Key Scholars of Harbin Normal University (Grant No. 11KXQ-06).

Abstract: The scheelite-structured CaWO4 phosphors doped with different concentrations of Sm3+ were prepared by precipitation method. Photoluminescence properties of Sm3+-doped CaWO4 samples were studied. Results indicate that red light emission of Sm3+ with higher color purity in the samples can be excited by 404 nm blue light. There are 4f-4f intrinsic emission of Sm3+ and a strong self-excitation emission of CaWO4 when excited by 240 nm short-wave ultraviolet, and the white light emission can be obtained. Experiments show that the best Sm3+ doping concentration is 2%. The energy transfer type between Sm3+ ions was determined to be the electric dipole-electric dipole interaction and the critical energy transfer distance (Dc) was calculated to be 2.0 nm.

Reference (21)

Catalog

    /

    返回文章
    返回