Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and theoretical investigation of transparent and conductive B doped ZnO film

Wang Yan-Feng Zhang Xiao-Dan Huang Qian Yang Fu Meng Xu-Dong Song Qing-Gong Zhao Ying

Experimental and theoretical investigation of transparent and conductive B doped ZnO film

Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Yang Fu, Meng Xu-Dong, Song Qing-Gong, Zhao Ying
PDF
Get Citation
  • The properties of boron doped ZnO (BZO) films are investigated by the pulsed DC magnetron sputtering technique and the plane wave pseudo-potential method based on the density-functional theory. Highly conductive and transparent BZO thin films are prepared using a B2O3:ZnO ceramic target. The effects of the substrate temperature on the structureand electrical and optical properties are systematically investigated. The results show that by increasing the substrate temperature appropriately, the crystallinity, grain size, and carrier mobility of BZO film are improved, and the resistivity is reduced. BZO films of low resistivity (7.03×10-4 Ω·cm) and high transmittance (89%) from 400–1100 nm are achieved at an optimal substrate temperature of 200 ℃. The theoretical results show that B is doped in ZnO mainly in three forms, i.e., in the forms of substitutional BZn atoms, octahedral interstitial site (BIO), and tetrahedral interstitial site (BIT). Among them the formation energy of BZn defect is lowest, and its concentration may be the highest in all the sample concentrations. After incorporation of B, the Fermi level goes through the conduction band. The sample shows a typical n-type metallic characteristic and the optical band gap increases significantly. The carriers originate from the orbits of B 2p, O 2p and Zn 4s.
    • Funds: Project supported by the National Basical Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), the Tianjin Science and Technology Supported Project, China (Grant No. 12ZCZDGX03600), the Major Science and Technology Supported Project of Tianjin, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120031110039).
    [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Hpkes J, Owen J I, Pust S E, Bunte E 2012 Chem. Phys. Chem. 13 66

    [3]

    Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [4]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [5]

    Fäy S, Feitknecht L, Schlchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [6]

    Faÿ S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961

    [7]

    WangY, Gu Y S, Peng S, Ding W Y, H L Wang, Chai W P 2011 Appl. Surf. Sci. 257 8044

    [8]

    Palacios P, Sánchez K, Wahnón P 2009 Thin Solid Films 517 2448

    [9]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [10]

    Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 物理学报 59 6446]

    [11]

    Özgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AVrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [13]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [14]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231

    [17]

    Lin S S, Huang J L, Šajgalik P 2005 Surf. Coat. Tech. 190 39

    [18]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [19]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [20]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [21]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801]

    [22]

    Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983

    [23]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 物理学报 62 047101]

    [24]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 1025 (in Chinese) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]

  • [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Hpkes J, Owen J I, Pust S E, Bunte E 2012 Chem. Phys. Chem. 13 66

    [3]

    Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [4]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [5]

    Fäy S, Feitknecht L, Schlchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [6]

    Faÿ S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961

    [7]

    WangY, Gu Y S, Peng S, Ding W Y, H L Wang, Chai W P 2011 Appl. Surf. Sci. 257 8044

    [8]

    Palacios P, Sánchez K, Wahnón P 2009 Thin Solid Films 517 2448

    [9]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [10]

    Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 物理学报 59 6446]

    [11]

    Özgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AVrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [13]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [14]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231

    [17]

    Lin S S, Huang J L, Šajgalik P 2005 Surf. Coat. Tech. 190 39

    [18]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [19]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [20]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [21]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801]

    [22]

    Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983

    [23]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 物理学报 62 047101]

    [24]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 1025 (in Chinese) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]

  • [1] Wang Yan-Feng, Meng Xu-Dong, Zheng Wei, Song Qing-Gong, Zhai Chang-Xin, Guo Bing, Zhang Yue, Yang Fu, Nan Jing-Yu. Investigation of V doped ZnO transparent conductive oxide films. Acta Physica Sinica, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [2] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [3] Zhang Ren-Gang, Wang Bao-Yi, Zhang Hui, Ma Chuang-Xin, Wei Long. The properties of the as-sputtered ZnO films under different deposition parameters after sulfidation. Acta Physica Sinica, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [4] Zhao Qi-Chen, Hao Rui-Ting, Liu Si-Jia, Liu Xin-Xing, Chang Fa-Ran, Yang Min, Lu Yi-Lei, Wang Shu-Rong. Fabrication of Cu2ZnSnS4 thin films by sputtering quaternary compound target and the research of in-situ annealing. Acta Physica Sinica, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [5] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [6] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [7] Wang Yan-Feng, Huang Qian, Song Qing-Gong, Liu Yang, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan. Theoretical and experimental investigation of W doped ZnO. Acta Physica Sinica, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [8] Wang Bao-Yi, Zhang Ren-Gang, Zhang Hui, Wan Dong-Yun, Wei Long. Influence of annealing conditions of ZnO films on the properties of ZnS films pr epared by sulfurizing ZnO films. Acta Physica Sinica, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [9] Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Liu Yang, Wei Chang-Chun, Zhao Ying. Room temperature deposition of highly conductive and transparent H and W co-doped ZnO film. Acta Physica Sinica, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [10] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [11] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [12] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Kong Fan-Tai, Hu Lin-Hua, Pan Xu, Shi Cheng-Wu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [13] Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian, Cai Hong-Kun, Tao Ke. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [14] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [16] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [17] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [18] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [19] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [20] Zhou Xiao-Li, Du Pi-Yi. CaCu33Ti44O1212 films prepared by magnetron s puttering. Acta Physica Sinica, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
  • Citation:
Metrics
  • Abstract views:  657
  • PDF Downloads:  1210
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2013
  • Accepted Date:  28 September 2013
  • Published Online:  20 December 2013

Experimental and theoretical investigation of transparent and conductive B doped ZnO film

  • 1. College of Science, Hebei North University, Zhangjiakou 075000, China;
  • 2. Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Key Laboratory of Opto-Electronic Information Science and Technology, Ministry of Education, Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University, Tianjin 300071, China;
  • 3. College of Science, Civil Aviation University of China, Tianjin 300300, China
Fund Project:  Project supported by the National Basical Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), the Tianjin Science and Technology Supported Project, China (Grant No. 12ZCZDGX03600), the Major Science and Technology Supported Project of Tianjin, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120031110039).

Abstract: The properties of boron doped ZnO (BZO) films are investigated by the pulsed DC magnetron sputtering technique and the plane wave pseudo-potential method based on the density-functional theory. Highly conductive and transparent BZO thin films are prepared using a B2O3:ZnO ceramic target. The effects of the substrate temperature on the structureand electrical and optical properties are systematically investigated. The results show that by increasing the substrate temperature appropriately, the crystallinity, grain size, and carrier mobility of BZO film are improved, and the resistivity is reduced. BZO films of low resistivity (7.03×10-4 Ω·cm) and high transmittance (89%) from 400–1100 nm are achieved at an optimal substrate temperature of 200 ℃. The theoretical results show that B is doped in ZnO mainly in three forms, i.e., in the forms of substitutional BZn atoms, octahedral interstitial site (BIO), and tetrahedral interstitial site (BIT). Among them the formation energy of BZn defect is lowest, and its concentration may be the highest in all the sample concentrations. After incorporation of B, the Fermi level goes through the conduction band. The sample shows a typical n-type metallic characteristic and the optical band gap increases significantly. The carriers originate from the orbits of B 2p, O 2p and Zn 4s.

Reference (24)

Catalog

    /

    返回文章
    返回