Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles

Qu Yan-Dong Kong Xiang-Qing Li Xiao-Jie Yan Hong-Hao

Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles

Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao
PDF
Get Citation
  • Nanopaticles of TiO2 mixed crystals (anatase phase and rutile phase) are prepared by detonation method. Morphologies and structural phase transformation behaviors of the as-prepared TiO2 nanopaticles are investigated for different annealing temperatures (600 ℃ and 720 ℃) and durations of annealing time (1, 2, 3.5, and 5 h). The structural phase transformation process and transformation mechanism are also discussed within the framework of the thermodynamic theory. Results show that with the increase of the annealing temperature and annealing time, the particle size of the detonation-prepared TiO2 nanoparticles increases gradually and the relative content of rutile phase in the TiO2 mixed crystal nanopaticles is improved. Compared with the TiO2 nanoparticles prepared by the conventional methods, the mean growth rate of rutile phase is obviously slower than that of anatase phase at the same annealing temperature and annealing time. It is obvious that the temperature at which the anatase phase completely changes into the rutile phase is lower than that of the TiO2 nanoparticles prepared by using other methods. These results are helpful for realizing the control of particle size and phase transformation of TiO2 nanoparticles. Meanwhile, the results can also provide us the theoretical and experimental bases for mass production of TiO2 nanoparticles in the future.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos 11302094, 11302093, 10572034), the Scientific Research Project of Education Department of Liaoning Province, China (Grant Nos L2011095, L2012221), and the Primitive Scientific Research Foundation for the Teachers of Liaoning University of Technology, China (Grant No X20112895).
    [1]

    Tanaka K, Capule M F V, Hisanaga T 1991 Chem. Phys. Lett. 187 73

    [2]

    Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q, Kong C 2012 Chin. Phys. B 21 118401

    [3]

    Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M, Cai J 2008 Chin. Phys. B 17 3713

    [4]

    Ghanbary F, Modirshahla N, Khosravi M, Behnajady M A 2012 J. Environ Sci-China 24 750

    [5]

    Ohsaka T, Yamaoka S, Shimonmura O 1979 Solid State Community 30 345

    [6]

    Fang D, Luo Z P, Huang K L, Lagoudas D C 2011 Appl. Surf. Sci. 257 6451

    [7]

    Perego C, Revel R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sciences 12 989

    [8]

    Li W, C Ni, Lin H, Shah S I, Huang C P 2004 J. Appl. Phys. 96 6663

    [9]

    Li G H, Xu Z D, Wang D W 2002 J. Inorg. Mater 17 422 (in Chinese) [李国华, 徐铸德, 王大伟 2002 无机材料学报 17 422]

    [10]

    Yue L H, Shui M, Xu Z D, Zheng Y F 2000 Chinese J. Inorg. Chem. 16 793 (in Chinese) [岳林海, 水淼, 徐铸德, 郑遗凡 2000 无机化学学报 16 793]

    [11]

    Hu L H, Dai J, Liu W Q, Dai S Y 2009 Acta Phys. Sin. 58 1115 (in Chinese) [胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元物理学报 2009 58 1115]

    [12]

    Chen Z J, Wang W, Cai Q, Chen X, Wu Z H, Li R P, Chen C Q, Pan W 2008 Acta Phys. Sin. 57 5793 (in Chinese) [陈中军, 王维, 蔡泉, 陈兴, 吴忠华, 李蓉萍, 车传强, 潘伟 2008 物理学报 57 5793]

    [13]

    Li X J, Qu Y D, Sun G L, Jiang D A, Ouyang X 2007 J. Phys. Chem. Solids 68 2405

    [14]

    Chen Q, Ma F, Yun S R, Huang F L 1999 Chinese J. Mater Res. 13 317 (in Chinese) [陈权, 马峰, 恽寿榕, 黄风雷 1999 材料研究学报 13 317]

    [15]

    Qu Y D, Li X J, Wang X H, Liu D H 2007 Nanotechnology 18 205602

    [16]

    Qu Y D, Li X J, Liu Y 2010 Chinese J. High Pressure Phys. 24 438 (in Chinese) [曲艳东, 李晓杰, 刘元 2010 高压物理学报 24 438]

    [17]

    Zhang K, Zhang L Q 2011 Superhard Materials Engineering 23 22(in Chinese) [张凯, 张路青 2011 超硬材料工程 23 22]

    [18]

    Qu Y D 2008 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [曲艳东博士学位论文(大连: 大连理工大学)2007].

    [19]

    Qu Y D, Li X J, Yan H, Ouyang X 2008 Glass Phys. Chem. 34 637

    [20]

    Gribb A A, Banfield J F 1997 Am. Mineral 82 717

    [21]

    Qu Y D, Li X J, Li R Y, Yan H H, Ouyang X, Wang X H 2008 Mater Res. Bull. 43 97

    [22]

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华, 戴松元, 王孔嘉 2003 物理学报 52 2135]

    [23]

    Qu Y D, Li X J, Zhang Y J, Sun G L, Wang X H 2006 J. Functional Materials 37 1838 (in Chinese) [曲艳东, 李晓杰, 张越举, 孙贵磊, 王小红 2006 功能材料 37 1838]

    [24]

    Li W, Ni C, Lin H, Huang C P, S Ismat Shaha 2004 J. Appl. Phys. 96 6663

    [25]

    Zhang H Z, Banfield J F 2000 J. Phys. Chem. B 104 3481

    [26]

    Puri P, Yang V 2007 J. Phys. Chem. C 111 11776

  • [1]

    Tanaka K, Capule M F V, Hisanaga T 1991 Chem. Phys. Lett. 187 73

    [2]

    Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q, Kong C 2012 Chin. Phys. B 21 118401

    [3]

    Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M, Cai J 2008 Chin. Phys. B 17 3713

    [4]

    Ghanbary F, Modirshahla N, Khosravi M, Behnajady M A 2012 J. Environ Sci-China 24 750

    [5]

    Ohsaka T, Yamaoka S, Shimonmura O 1979 Solid State Community 30 345

    [6]

    Fang D, Luo Z P, Huang K L, Lagoudas D C 2011 Appl. Surf. Sci. 257 6451

    [7]

    Perego C, Revel R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sciences 12 989

    [8]

    Li W, C Ni, Lin H, Shah S I, Huang C P 2004 J. Appl. Phys. 96 6663

    [9]

    Li G H, Xu Z D, Wang D W 2002 J. Inorg. Mater 17 422 (in Chinese) [李国华, 徐铸德, 王大伟 2002 无机材料学报 17 422]

    [10]

    Yue L H, Shui M, Xu Z D, Zheng Y F 2000 Chinese J. Inorg. Chem. 16 793 (in Chinese) [岳林海, 水淼, 徐铸德, 郑遗凡 2000 无机化学学报 16 793]

    [11]

    Hu L H, Dai J, Liu W Q, Dai S Y 2009 Acta Phys. Sin. 58 1115 (in Chinese) [胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元物理学报 2009 58 1115]

    [12]

    Chen Z J, Wang W, Cai Q, Chen X, Wu Z H, Li R P, Chen C Q, Pan W 2008 Acta Phys. Sin. 57 5793 (in Chinese) [陈中军, 王维, 蔡泉, 陈兴, 吴忠华, 李蓉萍, 车传强, 潘伟 2008 物理学报 57 5793]

    [13]

    Li X J, Qu Y D, Sun G L, Jiang D A, Ouyang X 2007 J. Phys. Chem. Solids 68 2405

    [14]

    Chen Q, Ma F, Yun S R, Huang F L 1999 Chinese J. Mater Res. 13 317 (in Chinese) [陈权, 马峰, 恽寿榕, 黄风雷 1999 材料研究学报 13 317]

    [15]

    Qu Y D, Li X J, Wang X H, Liu D H 2007 Nanotechnology 18 205602

    [16]

    Qu Y D, Li X J, Liu Y 2010 Chinese J. High Pressure Phys. 24 438 (in Chinese) [曲艳东, 李晓杰, 刘元 2010 高压物理学报 24 438]

    [17]

    Zhang K, Zhang L Q 2011 Superhard Materials Engineering 23 22(in Chinese) [张凯, 张路青 2011 超硬材料工程 23 22]

    [18]

    Qu Y D 2008 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [曲艳东博士学位论文(大连: 大连理工大学)2007].

    [19]

    Qu Y D, Li X J, Yan H, Ouyang X 2008 Glass Phys. Chem. 34 637

    [20]

    Gribb A A, Banfield J F 1997 Am. Mineral 82 717

    [21]

    Qu Y D, Li X J, Li R Y, Yan H H, Ouyang X, Wang X H 2008 Mater Res. Bull. 43 97

    [22]

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华, 戴松元, 王孔嘉 2003 物理学报 52 2135]

    [23]

    Qu Y D, Li X J, Zhang Y J, Sun G L, Wang X H 2006 J. Functional Materials 37 1838 (in Chinese) [曲艳东, 李晓杰, 张越举, 孙贵磊, 王小红 2006 功能材料 37 1838]

    [24]

    Li W, Ni C, Lin H, Huang C P, S Ismat Shaha 2004 J. Appl. Phys. 96 6663

    [25]

    Zhang H Z, Banfield J F 2000 J. Phys. Chem. B 104 3481

    [26]

    Puri P, Yang V 2007 J. Phys. Chem. C 111 11776

  • [1] Hu Lin-Hua, Dai Song-Yuan, Wang Kong-Jia. Structural transformation of nanocrystalline titania grown by sol-gel technique and the growth kinetics of crystallites. Acta Physica Sinica, 2003, 52(9): 2135-2139. doi: 10.7498/aps.52.2135
    [2] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [3] Cai Ya-Nan, Cui Can, Shen Hong-Lei, Liang Da-Yu, Li Pei-Gang, Tang Wei-Hua. Effects of thermal treatments on the formation of nanocrystalline Si embedded in Si-rich oxide films. Acta Physica Sinica, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [4] Dai Jun, Hu Lin-Hua, Liu Wei-Qing, Dai Song-Yuan. Study on the flatband potential of nanoporous TiO2 film electrode. Acta Physica Sinica, 2008, 57(8): 5310-5315. doi: 10.7498/aps.57.5310
    [5] Ren Lun, Li Kui-Ying, Cui Jie-Yuan, Zhao Jie. Photoelectron characteristics of ZnSe quantum dots-sensitized mesoporous La-doped nano-TiO2 film. Acta Physica Sinica, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [6] Hu Lin-Hua, Dai Jun, Liu Wei-Qing, Wang Kong-Jia, Dai Song-Yuan. Growth kinetics and growth process control of nanocrystalline TiO2 anatase. Acta Physica Sinica, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [7] Hari Bala, Shi Lan, Jiang Lei, Guo Jin-Yu, Yuan Guang-Yu, Wang Li-Bo, Liu Zong-Rui. Preparation of lamina-shape TiO2 nanoarray electrode and its electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [8] Gerward L., Wang Hui, Liu Jin-Fang, He Yan, Chen Wei, Wang Ying, Jiang Jian-Zhong. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge. Acta Physica Sinica, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [9] Wang Zhen-Xia, Wang Sen, Hu Jian-Gang, Yu Guo-Jun. Preliminary structural study of multi-wall carbon nanotubes in a returning phase transition process. Acta Physica Sinica, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
    [10] He Hong-Liang, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, Cui Xin-Lin. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [11] Wang Zhen-Xia, Zhu Zhi-Yuan, Hu Jian-Gang, Yong Zhen-Zhong, Li Qin-Tao. Phase transition from amorphous carbon to diamond nanocrystalline induced by 40Ar+. Acta Physica Sinica, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [12] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] Wang Jin-Zhi, Fang Qing-Qing. Structure phase transition and magnetic properties of nanocrystalline Zn0.6CoxFe2.4-xO4. Acta Physica Sinica, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [14] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [15] Yun Jiang-Juan, Chen Zheng, Li Shang-Jie, Zhang Jing. Effect of predeformation on the transition from hexagonal phase to square phase near the melting point using phase field crystal method. Acta Physica Sinica, 2014, 63(16): 166401. doi: 10.7498/aps.63.166401
    [16] Wang Chang-Zhou, Zhu Wei-Ling, Zhai Ji-Wei, Lai Tian-Shu. Phase-change behaviors in Ga30Sb70/Sb80Te20 nanocomposite multilayer films. Acta Physica Sinica, 2013, 62(3): 036402. doi: 10.7498/aps.62.036402
    [17] Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition. Acta Physica Sinica, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [18] Chen He-Sheng. Phase transition of lattice quantum chromodynamics with 2+1 flavor fermions at finite temperature and finite density. Acta Physica Sinica, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [19] Sun Jing-Yang, Wang Dong-Ming, Lü Ye-Gang, Wang Miao, Wang Yi-Man, Shen Xiang, Wang Guo-Xiang, Dai Shi-Xun. Structure and phase change in Cu-Ge3Sb2Te5 films for use in phase change random access memory. Acta Physica Sinica, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [20] Yuan Huan-Li, Yuan Bao-He, Li Fang, Liang Er-Jun. Phase transition and thermal expansion properties of ZrV2-xPxO7. Acta Physica Sinica, 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
  • Citation:
Metrics
  • Abstract views:  447
  • PDF Downloads:  988
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2013
  • Accepted Date:  13 October 2013
  • Published Online:  05 February 2014

Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles

  • 1. College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China;
  • 2. State Key Laboratory of Structural Analysis for Industrial Equipment; Dalian University of Technology, Dalian 116023, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos 11302094, 11302093, 10572034), the Scientific Research Project of Education Department of Liaoning Province, China (Grant Nos L2011095, L2012221), and the Primitive Scientific Research Foundation for the Teachers of Liaoning University of Technology, China (Grant No X20112895).

Abstract: Nanopaticles of TiO2 mixed crystals (anatase phase and rutile phase) are prepared by detonation method. Morphologies and structural phase transformation behaviors of the as-prepared TiO2 nanopaticles are investigated for different annealing temperatures (600 ℃ and 720 ℃) and durations of annealing time (1, 2, 3.5, and 5 h). The structural phase transformation process and transformation mechanism are also discussed within the framework of the thermodynamic theory. Results show that with the increase of the annealing temperature and annealing time, the particle size of the detonation-prepared TiO2 nanoparticles increases gradually and the relative content of rutile phase in the TiO2 mixed crystal nanopaticles is improved. Compared with the TiO2 nanoparticles prepared by the conventional methods, the mean growth rate of rutile phase is obviously slower than that of anatase phase at the same annealing temperature and annealing time. It is obvious that the temperature at which the anatase phase completely changes into the rutile phase is lower than that of the TiO2 nanoparticles prepared by using other methods. These results are helpful for realizing the control of particle size and phase transformation of TiO2 nanoparticles. Meanwhile, the results can also provide us the theoretical and experimental bases for mass production of TiO2 nanoparticles in the future.

Reference (26)

Catalog

    /

    返回文章
    返回