搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理对富硅氧化硅薄膜中硅纳米晶形成的影响

蔡雅楠 崔灿 沈洪磊 梁大宇 李培刚 唐为华

热处理对富硅氧化硅薄膜中硅纳米晶形成的影响

蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华
PDF
导出引用
导出核心图
  • 采用磁控溅射法制备了富硅氧化硅薄膜, 然后分别经过一步热处理、两步热处理和快速热处理制备了镶嵌有硅纳米晶的氧化硅薄膜. 实验结果表明, 在硅含量为~ 42.63 at.%的富硅氧化硅薄膜中, 三种热处理均能形成1012/cm2量级的硅纳米晶. 其中在两步热处理中, 硅纳米晶的密度最高, 达到2.2× 1012/cm2, 并且尺寸均匀、结晶完整性好; 一步热处理后的样品中, 硅纳米晶密度较低, 并且部分纳米晶结晶不充分; 快速热处理后的样品中, 硅纳米晶密度最低、尺寸分布不均匀, 并且存在孪晶结构. 分析认为, 热处理初始阶段的形核过程对纳米晶的密度及微观结构有着重要的影响, 两步热处理中的低温段促进了纳米晶的成核, 有助于形成高密度高质量硅纳米晶.
    • 基金项目: 国家自然科学基金(批准号: 60806045, 11074220, 51072182), 浙江省自然科学基金(批准号: Y4100310, R4090058)和浙江省大学生科技创新项目(批准号: 2009R406063)资助的课题.
    [1]

    Pavesi L, Negro L D, Mazzoleni C, Franzo G, Priolo F 2000 Nature 408 440

    [2]

    Marconi A, Anocpchenko A, Wang M, Pucker G, Bellutti P, Pavesi L 2009 Appl. Phys. Lett. 94 221110

    [3]

    Lewis N S 2007 Science 315 798

    [4]

    Conibeer G, Green M A, Konig D, Perez-Wurfl I, Huang S, Hao X, Di D, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z 2011 Prog. Photovolt: Res. Appl. 19 813

    [5]

    Wang Y Q, Smirani R, Ross G G, Schiettekatte F 2005 Phys. Rev. B 71 161310(R)

    [6]

    Heitmann J, Muller F, Zacharias M, Gosele U 2005 Adv. Mater. 17 795

    [7]

    Kahler U, Hofmeister H 2001 Opt. Mater. 17 83

    [8]

    Sui Y P, Ma Z Y, Chen K J, Li W, Xu J, Huang X F 2003 Acta Phys. Sin. 52 989 (in Chinese) [隋妍萍, 马忠元, 陈坤基, 李伟, 徐骏, 黄信凡 2003 物理学报 52 989]

    [9]

    Sui Y P, Huang X F, Ma Z Y, Li W, Qiao F, Chen K, Chen K J 2003 J. Phys.: Condens. Matter 15 5793

    [10]

    Khriachtechev L, Nikitin T, Rasanen M, Domanskaya A, Boninelli S, Iacona F, Engdahl A, Juhanoja J, Novikov S 2010 J. Appl. Phys. 108 124301

    [11]

    Chen G R, Song C, Xu J, Wang D Q, Xu L, Ma Z Y, Li W, Huang X F, Chen K J 2010 Acta Phys. Sin. 59 5681 (in Chinese) [陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基 2010 物理学报 59 5681]

    [12]

    Kachurin G A, Cherkova S G, Marin D V, Yankov R A, Deutschmann M 2008 Nanotechnology 19 355305

    [13]

    Philipp H R 1972 J. Non-Crys. Solids 8-10 627

    [14]

    Hao X J, Cho E C, Scardera G, Bellet-Amalric E, Bellet D, Shen Y S, Huang S, Huang Y D, Conibeer G, Green M A 2009 Thin Solid Films 517 5646

    [15]

    Cheng Q, Xu S, Ostrikov K K 2010 Acta Materialia 58 560

    [16]

    Pai P G, Chao S S, Takagi Y, Lucovsky G 1986 J. Vac. Sci. Technol. A 4 689

    [17]

    Iacona F, Bongiorno C, Spinella C, Boninelli S, Priolo F 2004 J. Appl. Lett. 95 3723

    [18]

    Chiu Y T, Yeh J T 2005 Solid State Transformation and Heat Treatment (ed Hazotte A, Weinheim: Wiley) p122

    [19]

    Mirabella S, Martino G D, Crupi I, Gibilisco S, Miritello M, Savio R L, Stefano M A, Marco S D, Simone F, Priolo F 2010 J. Appl. Lett. 108 093507

  • [1]

    Pavesi L, Negro L D, Mazzoleni C, Franzo G, Priolo F 2000 Nature 408 440

    [2]

    Marconi A, Anocpchenko A, Wang M, Pucker G, Bellutti P, Pavesi L 2009 Appl. Phys. Lett. 94 221110

    [3]

    Lewis N S 2007 Science 315 798

    [4]

    Conibeer G, Green M A, Konig D, Perez-Wurfl I, Huang S, Hao X, Di D, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z 2011 Prog. Photovolt: Res. Appl. 19 813

    [5]

    Wang Y Q, Smirani R, Ross G G, Schiettekatte F 2005 Phys. Rev. B 71 161310(R)

    [6]

    Heitmann J, Muller F, Zacharias M, Gosele U 2005 Adv. Mater. 17 795

    [7]

    Kahler U, Hofmeister H 2001 Opt. Mater. 17 83

    [8]

    Sui Y P, Ma Z Y, Chen K J, Li W, Xu J, Huang X F 2003 Acta Phys. Sin. 52 989 (in Chinese) [隋妍萍, 马忠元, 陈坤基, 李伟, 徐骏, 黄信凡 2003 物理学报 52 989]

    [9]

    Sui Y P, Huang X F, Ma Z Y, Li W, Qiao F, Chen K, Chen K J 2003 J. Phys.: Condens. Matter 15 5793

    [10]

    Khriachtechev L, Nikitin T, Rasanen M, Domanskaya A, Boninelli S, Iacona F, Engdahl A, Juhanoja J, Novikov S 2010 J. Appl. Phys. 108 124301

    [11]

    Chen G R, Song C, Xu J, Wang D Q, Xu L, Ma Z Y, Li W, Huang X F, Chen K J 2010 Acta Phys. Sin. 59 5681 (in Chinese) [陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基 2010 物理学报 59 5681]

    [12]

    Kachurin G A, Cherkova S G, Marin D V, Yankov R A, Deutschmann M 2008 Nanotechnology 19 355305

    [13]

    Philipp H R 1972 J. Non-Crys. Solids 8-10 627

    [14]

    Hao X J, Cho E C, Scardera G, Bellet-Amalric E, Bellet D, Shen Y S, Huang S, Huang Y D, Conibeer G, Green M A 2009 Thin Solid Films 517 5646

    [15]

    Cheng Q, Xu S, Ostrikov K K 2010 Acta Materialia 58 560

    [16]

    Pai P G, Chao S S, Takagi Y, Lucovsky G 1986 J. Vac. Sci. Technol. A 4 689

    [17]

    Iacona F, Bongiorno C, Spinella C, Boninelli S, Priolo F 2004 J. Appl. Lett. 95 3723

    [18]

    Chiu Y T, Yeh J T 2005 Solid State Transformation and Heat Treatment (ed Hazotte A, Weinheim: Wiley) p122

    [19]

    Mirabella S, Martino G D, Crupi I, Gibilisco S, Miritello M, Savio R L, Stefano M A, Marco S D, Simone F, Priolo F 2010 J. Appl. Lett. 108 093507

  • [1] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [2] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [3] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
    [4] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [5] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应. 物理学报, 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [6] 李丹, 李国庆. 氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响. 物理学报, 2018, 67(15): 157501. doi: 10.7498/aps.67.20180387
    [7] 马叙, 丁燕红, 李明吉, 杨保和. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [8] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [9] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [10] 周晓明, 邓俊裕, 於黄忠. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [11] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [12] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [13] 郑立仁, 黄柏标, 尉吉勇, 戴瑛. 非晶SiOx:C颗粒在空气中经高温煅烧后光学性质的研究. 物理学报, 2012, 61(21): 217803. doi: 10.7498/aps.61.217803
    [14] 贾云波, 林碧霞, 傅竹西, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
    [15] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
    [16] 朱 俊, 张兴元, 陆红波. 退火与极化温度对尼龙11薄膜驻极体内陷阱能级分布的影响. 物理学报, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [17] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [18] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [19] 廖国进, 闫绍峰, 戴晓春, 陈明, 骆红. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [20] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1679
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-26
  • 修回日期:  2011-12-27
  • 刊出日期:  2012-08-05

热处理对富硅氧化硅薄膜中硅纳米晶形成的影响

  • 1. 浙江理工大学理学院物理系, 光电材料与器件中心, 杭州 310018;
  • 2. 北京邮电大学理学院, 北京 100876
    基金项目: 

    国家自然科学基金(批准号: 60806045, 11074220, 51072182), 浙江省自然科学基金(批准号: Y4100310, R4090058)和浙江省大学生科技创新项目(批准号: 2009R406063)资助的课题.

摘要: 采用磁控溅射法制备了富硅氧化硅薄膜, 然后分别经过一步热处理、两步热处理和快速热处理制备了镶嵌有硅纳米晶的氧化硅薄膜. 实验结果表明, 在硅含量为~ 42.63 at.%的富硅氧化硅薄膜中, 三种热处理均能形成1012/cm2量级的硅纳米晶. 其中在两步热处理中, 硅纳米晶的密度最高, 达到2.2× 1012/cm2, 并且尺寸均匀、结晶完整性好; 一步热处理后的样品中, 硅纳米晶密度较低, 并且部分纳米晶结晶不充分; 快速热处理后的样品中, 硅纳米晶密度最低、尺寸分布不均匀, 并且存在孪晶结构. 分析认为, 热处理初始阶段的形核过程对纳米晶的密度及微观结构有着重要的影响, 两步热处理中的低温段促进了纳米晶的成核, 有助于形成高密度高质量硅纳米晶.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回