Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shear test and physical mechanism analysis on size effect of granular media

Fang Ying-Guang

Shear test and physical mechanism analysis on size effect of granular media

Fang Ying-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Shear test samples of different grain sizes are prepared by using mineral particles of soil, and a series of tests of quick direct shear and tri-axial shear are performed to study the size effect of granular media. Deformation curves and shear stress strength are given of test samples with particles of different size and volume fraction. On the basis of the ratio of micro-acting forces between particles to gravity and the cell element model, physical mechanism of grain size effect is, for the first time as far as we know, explained on the micro-level and mecro-level respectively. Test results show that the deformation characteristic of granular media is enhanced and its shear stress strength increases with increasing volume fraction and decreasing of particle size, and the effect of volume fraction on the deformation characteristics and strength is more notable than that of grain size. According to mechanism analysis on size effect, parameter ratio of micro-acting forces to gravity is suggested to assess aggregation and friction effects of particles in the media, and mecro-mechanism is interpreted as strain gradient and micro-cracks of deformation coordination leading to grain size effect. The cell element model presented in this paper can greatly reduce the degrees of freedom of granular media and provides an available way for calculation modeling in industry and engineering design.
    • Funds: Project supported by State Key Laboratory of Subtropical Building Science, South China University of Technology (Grant No. 2012ZA04).
    [1]

    Conway S L, Shinbrot T, Glasser B J 2004 Nature 431 433

    [2]

    Zhou J, Long S, Wang M Q, Dinsmore A D 2006 Science 312 1631

    [3]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [4]

    Zuriguel I, Mullin T 2008 Proc. R. Soc. A 8 99

    [5]

    Sun Q C, Wang G Q 2009 An introduction to the mechanics of granular matter (Beijing: Science press) p1 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版) 第1页]

    [6]

    Zhao C G, Zhang X D, Guo X 2006 Adv. in Mech. 36 611 (in Chinese) [赵成刚, 张雪东, 郭璇 2006 力学进展 36 611]

    [7]

    Yao Y P, Hou W 2009 Rock and Soil Mech 30 2881 (in Chinese) [姚仰平, 侯伟 2009 岩土力学 30 2881]

    [8]

    Campbell C S 2006 Technology 162 208

    [9]

    Ghiabi H, Selvadurai 2009 Int. J. Geomech. 9 1

    [10]

    Yuan X X, Li L S, Wen P P, Shi Q F, Zheng N 2013 Chin. Phys. Lett. 30 014501

    [11]

    Lu C H, Shi Q F, Yang L, Sun G 2008 Chin. Phys. Lett. 25 2542

    [12]

    Abdul Q, Madad A S, Saeed A K 2013 Chin. Phys. B 22 058301

    [13]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [14]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese) [赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819]

    [15]

    Yi C H, Mu Q S, Miao T D 2009 Acta Phys. Sin. 58 7750 (in Chinese) [宜晨虹, 慕青松, 苗天德 2009 物理学报 58 7750]

    [16]

    Zsaki A M 2009 Comp and Geotech. 36 568

    [17]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [18]

    Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727

    [19]

    Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 物理学报 61 244504]

    [20]

    Inam A, Ishikawa T, Miura S 2012 Soils and Found. 52 465

    [21]

    Ren J, Shen J, Lu S C 2005 Science and technology of particle dispersing (Beijing: Chemical industry press) p66 and p103 (in Chinese) [任俊, 沈健, 卢寿慈 2005 颗粒分散科学与技术(北京: 化学工业出版社)第66页, 103页]

  • [1]

    Conway S L, Shinbrot T, Glasser B J 2004 Nature 431 433

    [2]

    Zhou J, Long S, Wang M Q, Dinsmore A D 2006 Science 312 1631

    [3]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [4]

    Zuriguel I, Mullin T 2008 Proc. R. Soc. A 8 99

    [5]

    Sun Q C, Wang G Q 2009 An introduction to the mechanics of granular matter (Beijing: Science press) p1 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版) 第1页]

    [6]

    Zhao C G, Zhang X D, Guo X 2006 Adv. in Mech. 36 611 (in Chinese) [赵成刚, 张雪东, 郭璇 2006 力学进展 36 611]

    [7]

    Yao Y P, Hou W 2009 Rock and Soil Mech 30 2881 (in Chinese) [姚仰平, 侯伟 2009 岩土力学 30 2881]

    [8]

    Campbell C S 2006 Technology 162 208

    [9]

    Ghiabi H, Selvadurai 2009 Int. J. Geomech. 9 1

    [10]

    Yuan X X, Li L S, Wen P P, Shi Q F, Zheng N 2013 Chin. Phys. Lett. 30 014501

    [11]

    Lu C H, Shi Q F, Yang L, Sun G 2008 Chin. Phys. Lett. 25 2542

    [12]

    Abdul Q, Madad A S, Saeed A K 2013 Chin. Phys. B 22 058301

    [13]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [14]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese) [赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819]

    [15]

    Yi C H, Mu Q S, Miao T D 2009 Acta Phys. Sin. 58 7750 (in Chinese) [宜晨虹, 慕青松, 苗天德 2009 物理学报 58 7750]

    [16]

    Zsaki A M 2009 Comp and Geotech. 36 568

    [17]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [18]

    Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727

    [19]

    Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 物理学报 61 244504]

    [20]

    Inam A, Ishikawa T, Miura S 2012 Soils and Found. 52 465

    [21]

    Ren J, Shen J, Lu S C 2005 Science and technology of particle dispersing (Beijing: Chemical industry press) p66 and p103 (in Chinese) [任俊, 沈健, 卢寿慈 2005 颗粒分散科学与技术(北京: 化学工业出版社)第66页, 103页]

  • [1] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [2] Sun Qi-Cheng. Granular structure and the nonequilibrium thermodynamics. Acta Physica Sinica, 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [3] Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng. Analysis of elastic energy relaxation process for granular materials at quasi-static state. Acta Physica Sinica, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [4] Qian Zu-Wen. Viscosity coefficient in granular medium. Acta Physica Sinica, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [5] Yi Chen-Hong, Mu Qing-Song, Miao Tian-De. Discrete element method simulation on the force chains in the two-dimensional granular system under gravity. Acta Physica Sinica, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [6] Peng Zheng, Lu Kun-Quan, Hou Mei-Ying. Slow drag in jammed granular medium. Acta Physica Sinica, 2009, 58(9): 6566-6572. doi: 10.7498/aps.58.6566
    [7] Miao Tian-De, Yi Chen-Hong, Qi Yan-Li, Mu Qing-Song, Liu Yuan. Force transmission in three-dimensional hexagonal-close-packed granular arrays submitted to a point load. Acta Physica Sinica, 2007, 56(8): 4713-4721. doi: 10.7498/aps.56.4713
    [8] Yang Min-Yu, Song Jian-Jun, Zhang Jing, Tang Zhao-Huan, Zhang He-Ming, Hu Hui-Yong. Physical mechanism of uniaxial strain in nano-scale metal oxide semiconductor transistor caused by sin film. Acta Physica Sinica, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [9] Zhang Qi, Hou Mei-Ying. Research on size effect of direct shear test. Acta Physica Sinica, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [10] Zhang Qi, Li Yin-Chang, Liu Rui, Jiang Yi-Min, Hou Mei-Ying. Acoustic probing of the granular solid system under direct shear. Acta Physica Sinica, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [11] Wu Ya-Min, Chen Guo-Qing. Effect of temperature on optical bistability of coated granular composites. Acta Physica Sinica, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [12] Peng Zheng, Hou Mei-Ying, Shi Qing-Fan, Lu Kun-Quan. Effect of particle size on the sinking depth of an object supported by a granular bed. Acta Physica Sinica, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [13] Wu Ya-Min, Chen Guo-Qing. Optical bistability in graded granular composites. Acta Physica Sinica, 2010, 59(1): 592-596. doi: 10.7498/aps.59.592
    [14] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [15] Chen Zhi-Peng, Yu Wen-Jing, Gao Lei. Coherent perfect absorption in nonlocal particle composite medium. Acta Physica Sinica, 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
    [16] Zhang Quan-Yi, Peng Zheng, He Run, Liu Rui, Lu Kun-Quan, Hou Mei-Ying. The drag force experienced by a projectile in granular medium under gravity. Acta Physica Sinica, 2007, 56(8): 4708-4712. doi: 10.7498/aps.56.4708
    [17] Lu Xing-Zhong, Gao Lei. Optical bistability in granular composite media at high temperatures*. Acta Physica Sinica, 2004, 53(12): 4373-4377. doi: 10.7498/aps.53.4373
    [18] Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong. Experiments on shock-absorbing capacity of granular matter under impact load. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [19] Liu Han-Tao, Jian Shan, Wang Yan-Hua, Wang Chan-Juan, Li Hai-Qiao. Mesoscale simulation of the sedimentation of melting elliptical particle. Acta Physica Sinica, 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [20] Wu Ya-Min, Chen Guo-Qing. Effective AC response of nonlinear metal/dielectric granular composites. Acta Physica Sinica, 2006, 55(10): 5242-5246. doi: 10.7498/aps.55.5242
  • Citation:
Metrics
  • Abstract views:  1247
  • PDF Downloads:  2183
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2013
  • Accepted Date:  04 November 2013
  • Published Online:  05 February 2014

Shear test and physical mechanism analysis on size effect of granular media

  • 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China;
  • 2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China
Fund Project:  Project supported by State Key Laboratory of Subtropical Building Science, South China University of Technology (Grant No. 2012ZA04).

Abstract: Shear test samples of different grain sizes are prepared by using mineral particles of soil, and a series of tests of quick direct shear and tri-axial shear are performed to study the size effect of granular media. Deformation curves and shear stress strength are given of test samples with particles of different size and volume fraction. On the basis of the ratio of micro-acting forces between particles to gravity and the cell element model, physical mechanism of grain size effect is, for the first time as far as we know, explained on the micro-level and mecro-level respectively. Test results show that the deformation characteristic of granular media is enhanced and its shear stress strength increases with increasing volume fraction and decreasing of particle size, and the effect of volume fraction on the deformation characteristics and strength is more notable than that of grain size. According to mechanism analysis on size effect, parameter ratio of micro-acting forces to gravity is suggested to assess aggregation and friction effects of particles in the media, and mecro-mechanism is interpreted as strain gradient and micro-cracks of deformation coordination leading to grain size effect. The cell element model presented in this paper can greatly reduce the degrees of freedom of granular media and provides an available way for calculation modeling in industry and engineering design.

Reference (21)

Catalog

    /

    返回文章
    返回