Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relationship between the quasi-linear diffusion coefficients and the key parameters of spatial energetic electrons

Zhang Zhen-Xia Wang Chen-Yu Li Qiang Wu Shu-Gui

Relationship between the quasi-linear diffusion coefficients and the key parameters of spatial energetic electrons

Zhang Zhen-Xia, Wang Chen-Yu, Li Qiang, Wu Shu-Gui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It has been proved that the ground-based electromagnetic wave can transfer into ionosphere and interact with high-energy particles. By changing the pitch angle and momentum, the particles are imposed to enter the bounce loss cone and drift loss cone, then electron precipitation takes place and the particle bursts form. In recent decades, the relationship has been observed among electromagnetic disturbance and particle bursts and seismic activity based on satellite data. Here, by wave-particle cyclotron resonant interaction combined with the observation range of LEO satellite (about 350–1000 km), the evolvement trend of the pitch angle quasi-linear diffusion coefficients induced by field-aligned electromagnetic waves, is studied with the change of VLF electromagnetic wave frequency, band width, energies of electron (0.1–20 MeV) and L shell (L=1.1–3). We also show the relationship between VLF electromagnetic wave frequency and minimum energy of precipitation electron induced by it, under certain pitch angle value. The relationship among these quantities may be used to provide theoretical explanation for satellite observations of energetic particle precipitation examples, to provide guidance for extracting information associated with earthquakes from the detection of high-energy particles on the satellite, and to lay the foundation on the data analysis of China seismo-electromagnetic satellite planned to launch at about the end of 2016.
    • Funds: Project supported by the Spark Plan for Earthquake Science and Technology of China Earthquake Administration(Grant No.XH12066), and the Special Funds from the Welfare Industry, China (Grant No. 201108004).
    [1]

    Bullough K, Tatnall A R L, Denby M 1976 Nature 260 401

    [2]

    Kimura I, Matsumoto H, Mukai T, Hashimoto K, Bell T F, Inan U S, Helliwell R A, Katsufrakis J P 1983 J. Geophys. Res. 88 282

    [3]

    Inan U S, Chang H C, Helliwell R A, Imhof W L, Reagan J B, Walt M 1985 J. Geophy. Res. 90 359

    [4]

    Poulsen W L, Inan U S, Bell T F 1993 J. Geophy. Res. 98 A2 1705

    [5]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [6]

    Horne R B, Thorne R M, Shprits Y Y 2005 Nature 437 03939

    [7]

    Zheng H N, Su Z P, Xiong M 2008 Chin. Phys. Lett. 25 9 3515

    [8]

    Xiao F L, He Z G, Zhang S, Su Z P, Chen L X 2011 Chin. Phys. Lett. 28 3 039401

    [9]

    Su Z P, Zheng H N, Xiong M 2009 Chin. Phys. Lett. 26 3 039401

    [10]

    Zhou Q H, He Y H, He Z G, Yang C 2010 Chin. Phys. Lett. 27 5 055204

    [11]

    Voronov S A, Galper A M, Koldashov S V 1987 Proc. of 20th ICRC 4 451

    [12]

    Voronov S A, Galper A M, Koldashov S V 1989 Cosmic Res. 27 629

    [13]

    Aleksandrim S Y, Galper A M, Grishantzeva L A, Koldashov S V, Maslennikov L V, Murashov A M, Picozza P, Sgrigna V, Voronov S A 2003 Annales Geophysicae 21 597

    [14]

    Ruzhin Y Y, Larkina V I 1996 Proceed.14th Wroclaw EMC Symposium (URSI) 645

    [15]

    Sgrignaa V 2005 Journal of Atmospheric and Solar-Terrestrial Physics 67 1448

    [16]

    Zhang X M, Fidani C, Huang J P, Shen X H, Zeren Z, Qian J D 2013 Nat. Hazards Earth Syst. Sci. 13 197

    [17]

    Yan X X, Shan X J, Cao J B, Tang J, Wang F F 2012 Seismology and Geology 34 160

    [18]

    Li X Q, Ma Y Q, Wang H Y 2010 Chinese J. Geophys. 53 2337 (in Chinese) [李新乔, 马宇蒨, 王焕玉2010 地球物理学报53 2337]

    [19]

    Wang P, Wang H Y, Ma Y Q 2011 Acta Phys. Sin. 60 039401 (in Chinese)[王平, 王焕玉2011 物理学报60 039401]

    [20]

    Zhang Z X, Li X Q 2012 Chinese J. Geophys. 55 1581 (in Chinese)[张振霞, 李新乔等2012 地球物理学报55 1581]

    [21]

    Summers D, Thorne R M, Xiao F 1998 J. Geophys. Res. 103 20487

    [22]

    Summers D 2005 J. Geophys. Res. A 110 08214

    [23]

    Summers D, Ni B, Meredith N P 2007 J. Geophys. Res. A 112 04207

    [24]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese)[顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰2008 物理学报57 6673]

    [25]

    Walt M 2005 Introduction to Geomagnetically Trapped Radiation (UK: Cambridge University Press) p42

    [26]

    Lerche I 1968 Phys. Fluids 11 1720

    [27]

    Kulsrud R, Pearce W P 1969 Astrophys. J. 156 445

    [28]

    Schlickeiser R 1989 Astrophys. J. 336 243

    [29]

    Summers D 2005 J. Geophys. Res. 110 A 08213

    [30]

    Swanson D G 1989 Plasma Waves, Academic, Elsevier, New York

    [31]

    Santolik O, Gurnett D A 2003 Geophys. Res. Lett. 30 1031

    [32]

    Sauvaud J A, Moreau T, Maggiolo R 2006 Planetary and Space Science 54 502

    [33]

    Zhang X M, Zhao G Z, Chen X B, Ma W 2007 Progress in Geophysics 22 687 (in Chinese) [张学民, 赵国泽, 陈晓斌, 马为2007 国外地震电磁现象观测, 2007 地球物理学进展22 687]

    [34]

    Shen X H, Zhang X M, Wang L W, Chen H R, Wu Y, Yuan A G, Shen J F, Zhao S F, Qian J D, Ding J H 2011 Earthq. Sci 24 639

    [35]

    Angerami J J, Thomoa J O 1964 J. Geophys. Res. 69 4537 Inan U S, Chang H C, Helliwell R A 1984 J. Geophys. Res. 89 2891

    [36]

    Li X Q, Ma Y Q, Wang P 2012 J. Geophys. Res. 117 A 04201

    [37]

    Zhang S, Xiao F L 2010 Chin. Phys. Lett. 27 129401

    [38]

    Jiang H, Yang X X, Lin M M 2011 Chin. Phys. B 20 019401

    [39]

    Qureshi M N S, Sehar S, Shah H A, Cao J B 2013 Chin. Phys. B 22 035201

  • [1]

    Bullough K, Tatnall A R L, Denby M 1976 Nature 260 401

    [2]

    Kimura I, Matsumoto H, Mukai T, Hashimoto K, Bell T F, Inan U S, Helliwell R A, Katsufrakis J P 1983 J. Geophys. Res. 88 282

    [3]

    Inan U S, Chang H C, Helliwell R A, Imhof W L, Reagan J B, Walt M 1985 J. Geophy. Res. 90 359

    [4]

    Poulsen W L, Inan U S, Bell T F 1993 J. Geophy. Res. 98 A2 1705

    [5]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [6]

    Horne R B, Thorne R M, Shprits Y Y 2005 Nature 437 03939

    [7]

    Zheng H N, Su Z P, Xiong M 2008 Chin. Phys. Lett. 25 9 3515

    [8]

    Xiao F L, He Z G, Zhang S, Su Z P, Chen L X 2011 Chin. Phys. Lett. 28 3 039401

    [9]

    Su Z P, Zheng H N, Xiong M 2009 Chin. Phys. Lett. 26 3 039401

    [10]

    Zhou Q H, He Y H, He Z G, Yang C 2010 Chin. Phys. Lett. 27 5 055204

    [11]

    Voronov S A, Galper A M, Koldashov S V 1987 Proc. of 20th ICRC 4 451

    [12]

    Voronov S A, Galper A M, Koldashov S V 1989 Cosmic Res. 27 629

    [13]

    Aleksandrim S Y, Galper A M, Grishantzeva L A, Koldashov S V, Maslennikov L V, Murashov A M, Picozza P, Sgrigna V, Voronov S A 2003 Annales Geophysicae 21 597

    [14]

    Ruzhin Y Y, Larkina V I 1996 Proceed.14th Wroclaw EMC Symposium (URSI) 645

    [15]

    Sgrignaa V 2005 Journal of Atmospheric and Solar-Terrestrial Physics 67 1448

    [16]

    Zhang X M, Fidani C, Huang J P, Shen X H, Zeren Z, Qian J D 2013 Nat. Hazards Earth Syst. Sci. 13 197

    [17]

    Yan X X, Shan X J, Cao J B, Tang J, Wang F F 2012 Seismology and Geology 34 160

    [18]

    Li X Q, Ma Y Q, Wang H Y 2010 Chinese J. Geophys. 53 2337 (in Chinese) [李新乔, 马宇蒨, 王焕玉2010 地球物理学报53 2337]

    [19]

    Wang P, Wang H Y, Ma Y Q 2011 Acta Phys. Sin. 60 039401 (in Chinese)[王平, 王焕玉2011 物理学报60 039401]

    [20]

    Zhang Z X, Li X Q 2012 Chinese J. Geophys. 55 1581 (in Chinese)[张振霞, 李新乔等2012 地球物理学报55 1581]

    [21]

    Summers D, Thorne R M, Xiao F 1998 J. Geophys. Res. 103 20487

    [22]

    Summers D 2005 J. Geophys. Res. A 110 08214

    [23]

    Summers D, Ni B, Meredith N P 2007 J. Geophys. Res. A 112 04207

    [24]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese)[顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰2008 物理学报57 6673]

    [25]

    Walt M 2005 Introduction to Geomagnetically Trapped Radiation (UK: Cambridge University Press) p42

    [26]

    Lerche I 1968 Phys. Fluids 11 1720

    [27]

    Kulsrud R, Pearce W P 1969 Astrophys. J. 156 445

    [28]

    Schlickeiser R 1989 Astrophys. J. 336 243

    [29]

    Summers D 2005 J. Geophys. Res. 110 A 08213

    [30]

    Swanson D G 1989 Plasma Waves, Academic, Elsevier, New York

    [31]

    Santolik O, Gurnett D A 2003 Geophys. Res. Lett. 30 1031

    [32]

    Sauvaud J A, Moreau T, Maggiolo R 2006 Planetary and Space Science 54 502

    [33]

    Zhang X M, Zhao G Z, Chen X B, Ma W 2007 Progress in Geophysics 22 687 (in Chinese) [张学民, 赵国泽, 陈晓斌, 马为2007 国外地震电磁现象观测, 2007 地球物理学进展22 687]

    [34]

    Shen X H, Zhang X M, Wang L W, Chen H R, Wu Y, Yuan A G, Shen J F, Zhao S F, Qian J D, Ding J H 2011 Earthq. Sci 24 639

    [35]

    Angerami J J, Thomoa J O 1964 J. Geophys. Res. 69 4537 Inan U S, Chang H C, Helliwell R A 1984 J. Geophys. Res. 89 2891

    [36]

    Li X Q, Ma Y Q, Wang P 2012 J. Geophys. Res. 117 A 04201

    [37]

    Zhang S, Xiao F L 2010 Chin. Phys. Lett. 27 129401

    [38]

    Jiang H, Yang X X, Lin M M 2011 Chin. Phys. B 20 019401

    [39]

    Qureshi M N S, Sehar S, Shah H A, Cao J B 2013 Chin. Phys. B 22 035201

  • [1] CHEN JIAN-WEN, XU ZHI-ZHAN, XIAO TI-QIAO, XU HONG-JIE, ZHANG YING-JI. OBSERVATION OF ELECTROMAGNETIC MICROFIELD BY DIGITAL RECONSTRUCTION FROM ELECTRON HOLOGRAMS. Acta Physica Sinica, 1998, 47(9): 1450-1457. doi: 10.7498/aps.47.1450
    [2] LI ZHUANG, XU CHENG-HE. THEORETICAL ANALYSIS OF ELECTRON CYCLOTRON RESONANCE AMPLIFIER. Acta Physica Sinica, 1983, 32(10): 1237-1246. doi: 10.7498/aps.32.1237
    [3] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [4] Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang, Liu Ming-Hai. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [5] Yang Yi-Chun, Guo Quan, Lü Jun, Teng Peng-Xiao. Observation and study of precursor infrasound waves emitted before several strong earthquakes. Acta Physica Sinica, 2014, 63(13): 134302. doi: 10.7498/aps.63.134302
    [6] Luo Xu-Dong, Niu Sheng-Li, Zuo Ying-Hong. Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave. Acta Physica Sinica, 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [7] ZHOU XIAO-BING, ZHAO CHANG-LIN. TRANSITION BETWEEN TRAPPED ELECTRONS AND RUNAWAY ELECTRONS INDUCED BY ELECTRON CYCLOTRON WAVE IN MAGNETIC MIRROR PLASMA. Acta Physica Sinica, 1993, 42(8): 1257-1265. doi: 10.7498/aps.42.1257
    [8] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅰ)——Physical model and theoretical methods. Acta Physica Sinica, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [9] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [10] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [11] Gao Bi-Rong, Liu Yue. Numerical study on uniformity of electron cyclotron resonance plasma density. Acta Physica Sinica, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [12] GONG YE, WEN XIAO-JUN, ZHANG PENG-YUN, DENG XIN-LU. NUMERICAL STUDY OF ION TRANSPORT IN ECR MICROWAVE PLASMA WITH A CYLINDER MODEL. Acta Physica Sinica, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [13] Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing. Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster. Acta Physica Sinica, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [14] ZHU HE-SUN, CHEN GUANG-CHAO, JIANG DE-YI, YAO XIN-ZI, DU XIAO-LONG. PROPERTIES OF ELECTRON CYCLOTRON RESONANCE PLASMAS AND THEIR INFLUENCE ON THE DEPOSITION OF GaN FILMS. Acta Physica Sinica, 1999, 48(2): 257-266. doi: 10.7498/aps.48.257
    [15] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA. OPTICAL PROPERTIES OF AMORPHOUS FLUORINATED CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA. Acta Physica Sinica, 2001, 50(10): 2017-2022. doi: 10.7498/aps.50.2017
    [16] WANG SHI-QING, JIN YA-QIU. NUMERICAL ANALYSIS OF SAWTOOTH OSCILLATION DURING ELECTRON CYCLOTRON HEATING PHASES. Acta Physica Sinica, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [17] Yang You-Lei, Hu Ye-Min, Xiang Nong. Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave. Acta Physica Sinica, 2017, 66(24): 245202. doi: 10.7498/aps.66.245202
    [18] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [19] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [20] WU JUN-LING. THE RELATIVISTIC ELECTRON CYCLOTRON WAVE DISPERSION RELATION IN PLASMA. Acta Physica Sinica, 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
  • Citation:
Metrics
  • Abstract views:  1015
  • PDF Downloads:  881
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2013
  • Accepted Date:  26 December 2013
  • Published Online:  05 April 2014

Relationship between the quasi-linear diffusion coefficients and the key parameters of spatial energetic electrons

  • 1. National Earthquake Infrastruction Service, China Earthquake Administration, Beijing 100045, China;
  • 2. School of Physics, Peking University, Beijing 100871, China
Fund Project:  Project supported by the Spark Plan for Earthquake Science and Technology of China Earthquake Administration(Grant No.XH12066), and the Special Funds from the Welfare Industry, China (Grant No. 201108004).

Abstract: It has been proved that the ground-based electromagnetic wave can transfer into ionosphere and interact with high-energy particles. By changing the pitch angle and momentum, the particles are imposed to enter the bounce loss cone and drift loss cone, then electron precipitation takes place and the particle bursts form. In recent decades, the relationship has been observed among electromagnetic disturbance and particle bursts and seismic activity based on satellite data. Here, by wave-particle cyclotron resonant interaction combined with the observation range of LEO satellite (about 350–1000 km), the evolvement trend of the pitch angle quasi-linear diffusion coefficients induced by field-aligned electromagnetic waves, is studied with the change of VLF electromagnetic wave frequency, band width, energies of electron (0.1–20 MeV) and L shell (L=1.1–3). We also show the relationship between VLF electromagnetic wave frequency and minimum energy of precipitation electron induced by it, under certain pitch angle value. The relationship among these quantities may be used to provide theoretical explanation for satellite observations of energetic particle precipitation examples, to provide guidance for extracting information associated with earthquakes from the detection of high-energy particles on the satellite, and to lay the foundation on the data analysis of China seismo-electromagnetic satellite planned to launch at about the end of 2016.

Reference (39)

Catalog

    /

    返回文章
    返回