Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of magnetic ground state of quantum paraelectric EuTiO3 material

Li Cheng-Di Zhao Jing-Long Zhong Chong-Gui Dong Zheng-Chao Fang Jing-Huai

First-principles study of magnetic ground state of quantum paraelectric EuTiO3 material

Li Cheng-Di, Zhao Jing-Long, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai
PDF
Get Citation
  • Magnetic ground state of perovskite structure quantum paraelectric EuTiO3 has been known to have a planar anisotropic G-type antiferromagnet structure according to the experimental study. In this paper, based on density functional theory, first-principles computations are performed to investigate the magnetic properties and spin-exchange interaction of EuTiO3 in both of the quantum paraelectric phase and ferroelectric tetragonal phase under stress. By analyzing the energies of different magnetic structures and paths of spin exchange coupling as well as the effect of stress on the magnetic exchange paths change, it is found that when the system of EuTiO3 is free, it has a G-type antiferromagnetic structure with uniaxial anisotropic spin along [110] direction. Furthermore, in this structure, Eu 4f electron spin achieves antiferromagnetic super-exchange coupling via O 2p state at face-centered position. However, in the ferroelectric tetragonal phase structure induced by applied stress field, Eu 4f electron spin achieves ferromagnetic exchange coupling in [110] direction due to the variation of Eu-O-Eu bond angle in spin exchange path.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974104, 50832002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), the Qing Lan Project of the Education Department of Jiangsu Province, China, and the Initializing Funds for Scientific Research of Doctors in Nantong University, China.
    [1]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [2]
    [3]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [4]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [5]
    [6]

    Zhong C G, Chen Q, Dong Z C, Fang J H 2011 J. Nantong Univ. (Nat. Sci. Ed.) 10 58

    [7]
    [8]
    [9]

    Yao C D, Geng F F, Gao H, Xu Y L, Zhang A M, Tang C M, Zhu W H, Gong J F 2010 Acta Phys. Sin. 59 5332 (in Chinese) [姚长达, 耿芳芳, 高虹, 徐云玲, 张爱梅, 唐春梅, 朱卫华, 巩江峰 2010 物理学报 59 5332]

    [10]

    Zhu H W, Jiang P, Wang S L, Tang W H, Mao L F 2010 Acta Phys. Sin. 59 5710 (in Chinese) [朱晖文, 姜平, 王顺利, 唐为华, 毛凌峰 2010 物理学报 59 5710]

    [11]
    [12]
    [13]

    Zhong C G, Jiang Q, Fang J H, Jiang X F, Luo L J 2009 Acta Phys. Sin. 58 7227 (in Chinese) [仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进 2009 物理学报 58 7227]

    [14]

    Katsufuji T, Takagi H 2001 Phys. Rev. B 64 054415

    [15]
    [16]

    Jiang Q, Wu H 2003 J. Appl. Phys. 93 2121

    [17]
    [18]

    Jiang Q, Wu H 2002 Chin. Phys. 11 1303

    [19]
    [20]
    [21]

    Shvartsman V V, Borisov P, Kleemann W, Kamba S, Katsufuji T 2010 Phys. Rev. B 81 064426

    [22]

    Kamba S, Nuzhnyy D, Vanek P, Savinov M, Knize K, Shen Z, Santava E, Maca K, Sadowski M, Petzelt J 2007 Europhys. Lett. 80 27002

    [23]
    [24]

    Kugimiya K, Fujita K, Tanaka K, Hirao K 2007 J. Magn.Magn. Mater. 310 2268

    [25]
    [26]

    Sushkov A O, Eckel S, Lamoreaux S K 2010 Phys. Rev. A 81 022104

    [27]
    [28]
    [29]

    Rushchanskii K Z, Kamba S, Goian V, Vanek P, Savinov M, Prokleska J, Nuzhnyy D, Kn\izek K, Laufek F, Eckel S, Lamoreaux S K, Sushkov A O, Lezaic M, Spaldin N A 2010 Nat. Mater. 9 649

    [30]
    [31]

    McGuire T R, Shafer M W, Joenk R J, Alperin H A, Pickart S J 1966 J. Appl. Phys. 31 981

    [32]

    Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckrath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston-Halperin E, Schiom D G 2010 Nature 466 954

    [33]
    [34]
    [35]

    Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 97 267602

    [36]
    [37]

    Zhou W L, Xia K, Xu D, Zhong C G, Dong Z C, Fang J H 2012 Acta Phys. Sin. 61 097702 (in Chinese) [周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮 2012 物理学报 61 097702]

    [38]
    [39]

    Allieta M, Scavini M 2012 Phys. Rev. B 85 184107

    [40]
    [41]

    Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 Phys. Rev. B 86 094432

    [42]
    [43]

    Ravindran P, Kjekshus A, Fjellvg H, Delin A Eriksson 2002 Phys. Rev. B 65 06445

    [44]

    Snden R, Ravindran P, Stonlen S, Grande T M 2006 Phys. Rev. B 74 144102

    [45]
    [46]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [47]
    [48]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [49]
    [50]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [51]
    [52]

    Ranjan R, Nabi H S, Pentcheva R 2007 J. Phys.: Condens. Matter 19 406217

    [53]
    [54]

    Petrović A P, Kato Y, Sunku S S, Ito T, Sengupta P, Spalek L, Shimuta M, Katsufuji T, Batista C D, Saxena S S, Panagopoulos C 2013 Phys. Rev. B 87 064103

    [55]
    [56]
    [57]

    Chen C L, De Benedetti S, Barros F, De S 1974 Phys. Rev. B 10 3913

    [58]

    Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka I 2011 Phys. Rev. B 83 214421

    [59]
    [60]
    [61]

    Wu T, Cao H 2012 J. Soochow Univ. (Nat. Sci. Ed.) 28 75

  • [1]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [2]
    [3]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [4]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [5]
    [6]

    Zhong C G, Chen Q, Dong Z C, Fang J H 2011 J. Nantong Univ. (Nat. Sci. Ed.) 10 58

    [7]
    [8]
    [9]

    Yao C D, Geng F F, Gao H, Xu Y L, Zhang A M, Tang C M, Zhu W H, Gong J F 2010 Acta Phys. Sin. 59 5332 (in Chinese) [姚长达, 耿芳芳, 高虹, 徐云玲, 张爱梅, 唐春梅, 朱卫华, 巩江峰 2010 物理学报 59 5332]

    [10]

    Zhu H W, Jiang P, Wang S L, Tang W H, Mao L F 2010 Acta Phys. Sin. 59 5710 (in Chinese) [朱晖文, 姜平, 王顺利, 唐为华, 毛凌峰 2010 物理学报 59 5710]

    [11]
    [12]
    [13]

    Zhong C G, Jiang Q, Fang J H, Jiang X F, Luo L J 2009 Acta Phys. Sin. 58 7227 (in Chinese) [仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进 2009 物理学报 58 7227]

    [14]

    Katsufuji T, Takagi H 2001 Phys. Rev. B 64 054415

    [15]
    [16]

    Jiang Q, Wu H 2003 J. Appl. Phys. 93 2121

    [17]
    [18]

    Jiang Q, Wu H 2002 Chin. Phys. 11 1303

    [19]
    [20]
    [21]

    Shvartsman V V, Borisov P, Kleemann W, Kamba S, Katsufuji T 2010 Phys. Rev. B 81 064426

    [22]

    Kamba S, Nuzhnyy D, Vanek P, Savinov M, Knize K, Shen Z, Santava E, Maca K, Sadowski M, Petzelt J 2007 Europhys. Lett. 80 27002

    [23]
    [24]

    Kugimiya K, Fujita K, Tanaka K, Hirao K 2007 J. Magn.Magn. Mater. 310 2268

    [25]
    [26]

    Sushkov A O, Eckel S, Lamoreaux S K 2010 Phys. Rev. A 81 022104

    [27]
    [28]
    [29]

    Rushchanskii K Z, Kamba S, Goian V, Vanek P, Savinov M, Prokleska J, Nuzhnyy D, Kn\izek K, Laufek F, Eckel S, Lamoreaux S K, Sushkov A O, Lezaic M, Spaldin N A 2010 Nat. Mater. 9 649

    [30]
    [31]

    McGuire T R, Shafer M W, Joenk R J, Alperin H A, Pickart S J 1966 J. Appl. Phys. 31 981

    [32]

    Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckrath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston-Halperin E, Schiom D G 2010 Nature 466 954

    [33]
    [34]
    [35]

    Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 97 267602

    [36]
    [37]

    Zhou W L, Xia K, Xu D, Zhong C G, Dong Z C, Fang J H 2012 Acta Phys. Sin. 61 097702 (in Chinese) [周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮 2012 物理学报 61 097702]

    [38]
    [39]

    Allieta M, Scavini M 2012 Phys. Rev. B 85 184107

    [40]
    [41]

    Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 Phys. Rev. B 86 094432

    [42]
    [43]

    Ravindran P, Kjekshus A, Fjellvg H, Delin A Eriksson 2002 Phys. Rev. B 65 06445

    [44]

    Snden R, Ravindran P, Stonlen S, Grande T M 2006 Phys. Rev. B 74 144102

    [45]
    [46]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [47]
    [48]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [49]
    [50]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [51]
    [52]

    Ranjan R, Nabi H S, Pentcheva R 2007 J. Phys.: Condens. Matter 19 406217

    [53]
    [54]

    Petrović A P, Kato Y, Sunku S S, Ito T, Sengupta P, Spalek L, Shimuta M, Katsufuji T, Batista C D, Saxena S S, Panagopoulos C 2013 Phys. Rev. B 87 064103

    [55]
    [56]
    [57]

    Chen C L, De Benedetti S, Barros F, De S 1974 Phys. Rev. B 10 3913

    [58]

    Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka I 2011 Phys. Rev. B 83 214421

    [59]
    [60]
    [61]

    Wu T, Cao H 2012 J. Soochow Univ. (Nat. Sci. Ed.) 28 75

  • [1] Lv Qing-Rong, Fang Qing-Qing, Liu Yan-Mei. Magnetic properties and exchange bias effect of nano-structure Co x Fe3-x O4 porous microspheres. Acta Physica Sinica, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [2] Bao Bing-Hao, Luo Ying. Theoretical and experimental study on magnetoelectric effect in laminated composites of magnetostrictive and piezoelectric materials with finite input impedance. Acta Physica Sinica, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [3] Chen Lei, Li Ping, Wen Yu-Mei, Wang Dong. Effect of High-permeability FeCuNbSiB on magnetoelectric property of magnetostrictive/piezoelectric composite. Acta Physica Sinica, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [4] Xu Rong-Qing, Zhou Qing-Chun, Wang Jia-Fu. . Acta Physica Sinica, 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [5] Wang Qiang. Electron spin resonance study on charge ordering and spin ordering in nanocrystalline Bi0.2Ca0.8MnO3. Acta Physica Sinica, 2015, 64(18): 187501. doi: 10.7498/aps.64.187501
    [6] Yin Yun-Yu, Wang Xiao, Deng Hong-Shan, Zhou Long, Dai Jian-Hong, Long You-Wen. High-pressure synthesis and special physical properties of several ordered perovskite structures. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [7] Fang Qing-Qing, Jiao Yong-Fang, Li Rui, Wang Jin-Zhi, Cheng Hui. Studies on structure and magnetic properties of uniaxial M-type SrFe12-x 12-xCrxxO1919 hexaferrite nano-crystalline. Acta Physica Sinica, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [8] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [9] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [10] Zhou Wen-Liang, Xia Kun, Xu Da, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. Magnetoelectric properties of quantum paraelectric EuTiO3 materials on the strain effect. Acta Physica Sinica, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
  • Citation:
Metrics
  • Abstract views:  651
  • PDF Downloads:  654
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2013
  • Accepted Date:  22 January 2014
  • Published Online:  20 April 2014

First-principles study of magnetic ground state of quantum paraelectric EuTiO3 material

  • 1. School of Sciences, Nantong University, Nantong 226007, China;
  • 2. School of Physical Sciences and Technology, Suzhou University, Suzhou 215006, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 10974104, 50832002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), the Qing Lan Project of the Education Department of Jiangsu Province, China, and the Initializing Funds for Scientific Research of Doctors in Nantong University, China.

Abstract: Magnetic ground state of perovskite structure quantum paraelectric EuTiO3 has been known to have a planar anisotropic G-type antiferromagnet structure according to the experimental study. In this paper, based on density functional theory, first-principles computations are performed to investigate the magnetic properties and spin-exchange interaction of EuTiO3 in both of the quantum paraelectric phase and ferroelectric tetragonal phase under stress. By analyzing the energies of different magnetic structures and paths of spin exchange coupling as well as the effect of stress on the magnetic exchange paths change, it is found that when the system of EuTiO3 is free, it has a G-type antiferromagnetic structure with uniaxial anisotropic spin along [110] direction. Furthermore, in this structure, Eu 4f electron spin achieves antiferromagnetic super-exchange coupling via O 2p state at face-centered position. However, in the ferroelectric tetragonal phase structure induced by applied stress field, Eu 4f electron spin achieves ferromagnetic exchange coupling in [110] direction due to the variation of Eu-O-Eu bond angle in spin exchange path.

Reference (61)

Catalog

    /

    返回文章
    返回