Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of interfacial electron transfer on fluorescence blinking of quantum dots

Wu Jian-Fang Zhang Guo-Feng Chen Rui-Yun Qin Cheng-Bin Xiao Lian-Tuan Jia Suo-Tang

Influence of interfacial electron transfer on fluorescence blinking of quantum dots

Wu Jian-Fang, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bin, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The fluorescence blinking characteristics of the single CdSe/ZnS core/shell quantum dots (QDs) absorbed on the cover glass surface, indium-tin oxide (ITO) nanoparticles, and polymethyl methacrylate (PMMA) film surface are measured by a laser scanning confocal fluorescence microscopy. It is found that all the distributions of bright state duration time of QDs on the three different interfaces can be described by a truncated power law P(t)∝ t-αexp(-t/μ). The statistical on-time durations of single QDs absorbed on the ITO nanoparticles is shorter than on the glass. In addition, the on-time duration with single QDs absorbed on the PMMA is longer than on the others. These differences can be attributed to the diverse interfacial electron transfers between QD and different materials.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2012CB921603, 2010CB923103), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166), the International Science and Technology Cooperation Program of Ministry of Science and Technology, China (Grant No. 2001DFA12490), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61121064), the Cheung Kong Scholars and Innovative Research Team Program in University of Ministry of Education, China (Grant No. IRT13076), and the Specialized Research Foundation for the Doctoral Program of Institution of Higher Education of China (Grant No. 20121401120016).
    [1]

    Medintz I L, Uyeda H T, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435

    [2]

    Moreau E, Robert I, Gérard J M, Abram I, Manin L, Thierry-Mieg V 2001 Appl. Phys. Lett. 79 2865

    [3]

    Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2013 Nat. Commun. 4 1447

    [4]

    Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354

    [5]

    Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [6]

    Liu B Z, Li R F, Song L Y, Hu L, Zhang B P, Chen Y Y, Wu J Z, Bi G, Wang M, Wu H Z 2013 Acta Phys. Sin. 62 158504 (in Chinese) [刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢 2013 物理学报 62 158504]

    [7]

    Li X K, Liang D C, Jin P, An Q, Wei H, Wu J, Wang Z G 2012 Chin. Phys. B 21 028102

    [8]

    Samadpour M, Iraji zad A, Molaei M 2014 Chin. Phys. B 23 047302

    [9]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [10]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]

    [11]

    Han R C, Li Z H, Fan Y Y, Jiang Y Q 2013 J. Genet. Genomics. 40 583

    [12]

    Issac A, Jin S Y, Lian T Q 2008 J. Am. Chem. Soc. 130 11280

    [13]

    Jin S Y, Lian T Q 2009 Nano Lett. 9 2448

    [14]

    Krauss T D, O'Brien S, Brus L E 2001 J. Phys. Chem. B 105 1725

    [15]

    Wang S Y, Querner C, Emmons T, Drndic M, Crouch C H 2006 J. Phys. Chem. B 110 23221

    [16]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [17]

    Shimizu K T, Neuhauser R G, Leatherdale C A, Empedocles S A, Woo W K, Bawendi M G 2001 Phys. Rev. B 63 205316

    [18]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 115 1028

    [19]

    Mller J, Lupton J M, Rogach A L, Feldmann J, Talapin D V, Weller H 2004 Appl. Phys. Lett. 85 381

    [20]

    Bharadwaj P, Novotny L 2011 Nano Lett. 11 2137

    [21]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [22]

    Jin S Y, Hsiang J C, Zhu H M, Song N H, Dickson R M, Lian T Q 2010 Chem. Sci. 1 519

    [23]

    Issac A, von Borczyskowski C, Cichos F 2005 Phys. Rev. B 71 161302

    [24]

    Chowdry A, Westgate C 1974 J. Phys. D: Appl. Phys. 7 713

    [25]

    Verberk R, van Oijen A M, Orrit M 2002 Phys. Rev. B 66 233202

  • [1]

    Medintz I L, Uyeda H T, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435

    [2]

    Moreau E, Robert I, Gérard J M, Abram I, Manin L, Thierry-Mieg V 2001 Appl. Phys. Lett. 79 2865

    [3]

    Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2013 Nat. Commun. 4 1447

    [4]

    Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354

    [5]

    Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [6]

    Liu B Z, Li R F, Song L Y, Hu L, Zhang B P, Chen Y Y, Wu J Z, Bi G, Wang M, Wu H Z 2013 Acta Phys. Sin. 62 158504 (in Chinese) [刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢 2013 物理学报 62 158504]

    [7]

    Li X K, Liang D C, Jin P, An Q, Wei H, Wu J, Wang Z G 2012 Chin. Phys. B 21 028102

    [8]

    Samadpour M, Iraji zad A, Molaei M 2014 Chin. Phys. B 23 047302

    [9]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [10]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]

    [11]

    Han R C, Li Z H, Fan Y Y, Jiang Y Q 2013 J. Genet. Genomics. 40 583

    [12]

    Issac A, Jin S Y, Lian T Q 2008 J. Am. Chem. Soc. 130 11280

    [13]

    Jin S Y, Lian T Q 2009 Nano Lett. 9 2448

    [14]

    Krauss T D, O'Brien S, Brus L E 2001 J. Phys. Chem. B 105 1725

    [15]

    Wang S Y, Querner C, Emmons T, Drndic M, Crouch C H 2006 J. Phys. Chem. B 110 23221

    [16]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [17]

    Shimizu K T, Neuhauser R G, Leatherdale C A, Empedocles S A, Woo W K, Bawendi M G 2001 Phys. Rev. B 63 205316

    [18]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 115 1028

    [19]

    Mller J, Lupton J M, Rogach A L, Feldmann J, Talapin D V, Weller H 2004 Appl. Phys. Lett. 85 381

    [20]

    Bharadwaj P, Novotny L 2011 Nano Lett. 11 2137

    [21]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [22]

    Jin S Y, Hsiang J C, Zhu H M, Song N H, Dickson R M, Lian T Q 2010 Chem. Sci. 1 519

    [23]

    Issac A, von Borczyskowski C, Cichos F 2005 Phys. Rev. B 71 161302

    [24]

    Chowdry A, Westgate C 1974 J. Phys. D: Appl. Phys. 7 713

    [25]

    Verberk R, van Oijen A M, Orrit M 2002 Phys. Rev. B 66 233202

  • [1] Wang Zao, Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Xiao Lian-Tuan, Jia Suo-Tang. Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial. Acta Physica Sinica, 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [2] Deng Yu-Xiang, Yan Xiao-Hong, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [3] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [4] Zheng Rui-Lun. Energy of excitons and probability distribution of electrons in columned composite system composed of quantum dots and quantum wires. Acta Physica Sinica, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [5] Zhang Qiang-Qiang,  Hu Jian-Yong,  Jing Ming-Yong,  Li Bin,  Qin Cheng-Bing,  Li Yao,  Xiao Lian-Tuan,  Jia Suo-Tang. Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum. Acta Physica Sinica, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [6] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [7] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [8] Wu Hai-Na, Sun Xue, Gong Wei-Jiang, Yi Guang-Yu. Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system. Acta Physica Sinica, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [9] Wang Fang-Zhen, Chen Zhang-Hai, Liu Yi, Huang Shao-Hua, Bai Li-Hui, Shen Xue-Chu. Exciton transfer and the optical properties of two types of quantum islands (dots) in ultrathin CdSe/ZnSe layers. Acta Physica Sinica, 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [10] YUAN XIAO-LI, SHI YI, YANG HONG-GUAN, BU HUI-MING, WU JUN, ZHAO BO, ZHANG RONG, ZHENG YOU-DOU. CHARGING DYNAMICS OF Si-QUANTUM DOTS IN TUNNEL CAPACITOR. Acta Physica Sinica, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [11] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [12] Zhao Rui-Tong, Liang Rui-Sheng, Wang Fa-Qiang. Quantum entanglement concentration for photonic polarization state assisted by electron spin. Acta Physica Sinica, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [13] Ju Xin, Guo Jian-Hong. Influence of interdot-coupling on differentialconductance for a triple quantum dot. Acta Physica Sinica, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [14] Hou Chun-Feng, Guo Ru-Hai. Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [15] Zhou Liang-Liang, Wu Hong-Bo, Li Xue-Ming, Tang Li-Bin, Guo Wei, Liang Jing. ZrS2 quantum dots: Preparation, structure, and optical properties. Acta Physica Sinica, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [16] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [17] Liu Zhi-Min, Zhao Su-Ling, Xu Zheng, Gao Song, Yang Yi-Fan. Luminescence characteristics of PVK doped with red-emitting quantum dots. Acta Physica Sinica, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [18] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [19] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [20] Liu Shi-Rong, Huang Wei-Qi, Qin Zhao-Jian. Germanium quantum dots formed by oxidation of SiGe alloys. Acta Physica Sinica, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
  • Citation:
Metrics
  • Abstract views:  1792
  • PDF Downloads:  727
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2014
  • Accepted Date:  28 April 2014
  • Published Online:  05 August 2014

Influence of interfacial electron transfer on fluorescence blinking of quantum dots

  • 1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectrum, Shanxi University, Taiyuan 030006, China
Fund Project:  Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2012CB921603, 2010CB923103), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166), the International Science and Technology Cooperation Program of Ministry of Science and Technology, China (Grant No. 2001DFA12490), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61121064), the Cheung Kong Scholars and Innovative Research Team Program in University of Ministry of Education, China (Grant No. IRT13076), and the Specialized Research Foundation for the Doctoral Program of Institution of Higher Education of China (Grant No. 20121401120016).

Abstract: The fluorescence blinking characteristics of the single CdSe/ZnS core/shell quantum dots (QDs) absorbed on the cover glass surface, indium-tin oxide (ITO) nanoparticles, and polymethyl methacrylate (PMMA) film surface are measured by a laser scanning confocal fluorescence microscopy. It is found that all the distributions of bright state duration time of QDs on the three different interfaces can be described by a truncated power law P(t)∝ t-αexp(-t/μ). The statistical on-time durations of single QDs absorbed on the ITO nanoparticles is shorter than on the glass. In addition, the on-time duration with single QDs absorbed on the PMMA is longer than on the others. These differences can be attributed to the diverse interfacial electron transfers between QD and different materials.

Reference (25)

Catalog

    /

    返回文章
    返回