搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子-声子相互作用对平行双量子点体系热电效应的影响

吴海娜 孙雪 公卫江 易光宇

电子-声子相互作用对平行双量子点体系热电效应的影响

吴海娜, 孙雪, 公卫江, 易光宇
PDF
导出引用
导出核心图
  • 量子点体系是一种典型的低维体系, 该体系的独特物理特性有利于提高热电转换效率. 本文采用非平衡态格林函数方法, 选择平行双量子点结构, 详细讨论了电子-声子相互作用对该体系的电导、热电功率、热电优值以及热导等热电效应相关参数的影响, 全面描述了电子-声子相互作用对该结构中热电效应的影响. 理论计算结果表明, 在低温情况下, 该体系中的法诺干涉能够有效增强热电效应, 而电子-声子相互作用通过破坏法诺干涉而在一定程度上抑制电导以及热导过程. 然而, 电子-声子相互作用不会显著地影响热电功率的幅值, 并且热电优值的极值几乎不会改变, 因此在低温条件下电子-声子相互作用并不是破坏量子点体系热电效应的必要条件. 本文的结果将有利于澄清电子-声子相互作用对量子点体系热电效应的影响.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: N130505001)和辽宁省教育厅科学研究一般项目(批准号: L2014099)资助的课题.
    [1]

    Dubi Y, Ventra M D 2011 Rev. Mod. Phys. 83 131

    [2]

    Agrait N, Untiedt C, Bollinger G R, Vieira S 2002 Phys. Rev. Lett. 88 216803

    [3]

    Appleyard N, Nicholls J T, Pepper M, Tribe W R, Simmons M Y, Ritchie D A 2000 Phys. Rev. B 62 16275

    [4]

    Kubala B, König J, Pekola J 2008 Phys. Rev. Lett. 100 066801

    [5]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [6]

    Kim T S, Hershfield S 2002 Phys. Rev. Lett. 88 136601

    [7]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [8]

    Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321

    [9]

    Chen X S, Buhmaim H, Molenkamp L W 2000 Phys. Rev. B 61 16801

    [10]

    Chi F, Zheng J, Lu X D, Zhang K C 2011 Phys. Lett. A 375 1352

    [11]

    Wu L J, Han Y, Gong W J, Tan T Y 2011 Acta Phys. Sin. 60 107303 (in Chinese) [吴丽君, 韩宇, 公卫江, 谭天亚 2011 物理学报 60 107303]

    [12]

    Zianni X 2007 Phy. Rev. B 75 045344

    [13]

    Wang R Q, Sheng L, Shen R, Wang B, Xing D Y 2010 Phys. Rev. Lett. 105 057202

    [14]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778

    [15]

    Hatami M, Bauer G E W, Zhang Q, Kelly P J 2007 Phys. Rev. Lett. 99 066603

    [16]

    Chen C Y, Lin D L, Jin P W, Zhang S Q 1994 Phys. Rev. B 49 13680

    [17]

    Luo K, Wang F Q, Liang R S, Ren Z Z 2014 Chin. Phys. B 23 107103

    [18]

    Zhang A M, Zhang Q M 2013 Chin. Phys. B 22 087103

    [19]

    Dmitriy V, Melnikov, Beall Fowler W 2001 Phy. Rev. B 63 165302

    [20]

    Weig E M, Blick R H, Brandes T, Kirschbaum J, Wegscheider W, Bichler M, Kotthaus J P 2004 Phy. Rev. Lett. 92 46804

    [21]

    Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P, McEuen P L 2000 Nature 40 757

    [22]

    Li J J, Zhu K D 2009 Appl. Phys. Lett. 94 063116

    [23]

    Akiko U, Mikio E 2006 Phys. Rev. B 73 235353

    [24]

    Kuo D M T, Chang Y C 2002 Phys. Rev. B 66 085311

    [25]

    Zhu J X, Balatsky A V 2003 Phys. Rev. B 67 165326

    [26]

    Liu Y S, Chen H, Fan X H, Yang X F 2006 Phys. Rev. B 73 115310

    [27]

    Song J T, Sun Q F, Jiang H, Xie X C 2008 Phys. Rev. B 77 035309

    [28]

    Marcos H Degani, Gil A Farias 1990 Phys. Rev. B 42 11950

    [29]

    Roca E, Trallero-Giner C, Gardona M 1994 Phys. Rev. B 49 13704

    [30]

    Kazunori O, Koji A, Mistsuru M 1999 Phys. Rev. B 59 110850

    [31]

    Chen Z Z, L R, Zhu B F 2005 Phy. Rev. B 71 165324

    [32]

    Stephanie M R, Matti M 2002 Rev. Mod. Phys. 74 1283

    [33]

    Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1

    [34]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217

    [35]

    Melniko D V, Beall F W 2001 Phys. Rev. B 64 245320

  • [1]

    Dubi Y, Ventra M D 2011 Rev. Mod. Phys. 83 131

    [2]

    Agrait N, Untiedt C, Bollinger G R, Vieira S 2002 Phys. Rev. Lett. 88 216803

    [3]

    Appleyard N, Nicholls J T, Pepper M, Tribe W R, Simmons M Y, Ritchie D A 2000 Phys. Rev. B 62 16275

    [4]

    Kubala B, König J, Pekola J 2008 Phys. Rev. Lett. 100 066801

    [5]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [6]

    Kim T S, Hershfield S 2002 Phys. Rev. Lett. 88 136601

    [7]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [8]

    Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321

    [9]

    Chen X S, Buhmaim H, Molenkamp L W 2000 Phys. Rev. B 61 16801

    [10]

    Chi F, Zheng J, Lu X D, Zhang K C 2011 Phys. Lett. A 375 1352

    [11]

    Wu L J, Han Y, Gong W J, Tan T Y 2011 Acta Phys. Sin. 60 107303 (in Chinese) [吴丽君, 韩宇, 公卫江, 谭天亚 2011 物理学报 60 107303]

    [12]

    Zianni X 2007 Phy. Rev. B 75 045344

    [13]

    Wang R Q, Sheng L, Shen R, Wang B, Xing D Y 2010 Phys. Rev. Lett. 105 057202

    [14]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778

    [15]

    Hatami M, Bauer G E W, Zhang Q, Kelly P J 2007 Phys. Rev. Lett. 99 066603

    [16]

    Chen C Y, Lin D L, Jin P W, Zhang S Q 1994 Phys. Rev. B 49 13680

    [17]

    Luo K, Wang F Q, Liang R S, Ren Z Z 2014 Chin. Phys. B 23 107103

    [18]

    Zhang A M, Zhang Q M 2013 Chin. Phys. B 22 087103

    [19]

    Dmitriy V, Melnikov, Beall Fowler W 2001 Phy. Rev. B 63 165302

    [20]

    Weig E M, Blick R H, Brandes T, Kirschbaum J, Wegscheider W, Bichler M, Kotthaus J P 2004 Phy. Rev. Lett. 92 46804

    [21]

    Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P, McEuen P L 2000 Nature 40 757

    [22]

    Li J J, Zhu K D 2009 Appl. Phys. Lett. 94 063116

    [23]

    Akiko U, Mikio E 2006 Phys. Rev. B 73 235353

    [24]

    Kuo D M T, Chang Y C 2002 Phys. Rev. B 66 085311

    [25]

    Zhu J X, Balatsky A V 2003 Phys. Rev. B 67 165326

    [26]

    Liu Y S, Chen H, Fan X H, Yang X F 2006 Phys. Rev. B 73 115310

    [27]

    Song J T, Sun Q F, Jiang H, Xie X C 2008 Phys. Rev. B 77 035309

    [28]

    Marcos H Degani, Gil A Farias 1990 Phys. Rev. B 42 11950

    [29]

    Roca E, Trallero-Giner C, Gardona M 1994 Phys. Rev. B 49 13704

    [30]

    Kazunori O, Koji A, Mistsuru M 1999 Phys. Rev. B 59 110850

    [31]

    Chen Z Z, L R, Zhu B F 2005 Phy. Rev. B 71 165324

    [32]

    Stephanie M R, Matti M 2002 Rev. Mod. Phys. 74 1283

    [33]

    Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1

    [34]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217

    [35]

    Melniko D V, Beall F W 2001 Phys. Rev. B 64 245320

  • [1] 罗质华, 梁国栋. 一维介观环中持续电流的电子-声子相互作用非经典效应. 物理学报, 2011, 60(3): 037303. doi: 10.7498/aps.60.037303
    [2] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [3] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [4] 程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响. 物理学报, 2017, 66(13): 137802. doi: 10.7498/aps.66.137802
    [5] 肖景林, 陈英杰. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [6] 李桂琴, 蔡军. graphene量子点的起伏效应对尺寸的敏感性研究. 物理学报, 2009, 58(9): 6453-6458. doi: 10.7498/aps.58.6453
    [7] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [8] 白旭芳, 赵玉伟, 尹洪武, 额尔敦朝鲁. 氢化杂质和厚度效应对高斯势量子点中二能级体系量子跃迁的影响. 物理学报, 2018, 67(17): 177801. doi: 10.7498/aps.67.20180341
    [9] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [10] 颜晓红, 邓宇翔, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [11] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [12] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [13] 陈丽, 孙媛媛, 王永龙, 潘洪哲, 徐明. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [14] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [15] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化. 物理学报, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [16] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性. 物理学报, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [17] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 界面电子转移对量子点荧光闪烁行为的影响. 物理学报, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [18] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流. 物理学报, 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [19] 杨翀, 姚建明. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [20] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
  • 引用本文:
    Citation:
计量
  • 文章访问数:  842
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-18
  • 修回日期:  2014-10-29
  • 刊出日期:  2015-04-05

电子-声子相互作用对平行双量子点体系热电效应的影响

  • 1. 东北大学, 理学院物理系, 沈阳 110819
    基金项目: 

    中央高校基本科研业务费专项资金(批准号: N130505001)和辽宁省教育厅科学研究一般项目(批准号: L2014099)资助的课题.

摘要: 量子点体系是一种典型的低维体系, 该体系的独特物理特性有利于提高热电转换效率. 本文采用非平衡态格林函数方法, 选择平行双量子点结构, 详细讨论了电子-声子相互作用对该体系的电导、热电功率、热电优值以及热导等热电效应相关参数的影响, 全面描述了电子-声子相互作用对该结构中热电效应的影响. 理论计算结果表明, 在低温情况下, 该体系中的法诺干涉能够有效增强热电效应, 而电子-声子相互作用通过破坏法诺干涉而在一定程度上抑制电导以及热导过程. 然而, 电子-声子相互作用不会显著地影响热电功率的幅值, 并且热电优值的极值几乎不会改变, 因此在低温条件下电子-声子相互作用并不是破坏量子点体系热电效应的必要条件. 本文的结果将有利于澄清电子-声子相互作用对量子点体系热电效应的影响.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回