Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar

Zhu Xiang-Fei Lin Zhao-Xiang Liu Lin-Mei Shao Jun-Yi Gong Wei

Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar

Zhu Xiang-Fei, Lin Zhao-Xiang, Liu Lin-Mei, Shao Jun-Yi, Gong Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to improve the inversion precision of CO2 lidar, the fine structure in CO2 absorption spectrum (at around 1.572 m) has been detected accurately, with tunable diode laser absorption spectroscopy (TDLAS) technique in a double beam differential system. Differences between absorption spectra were analyzed. The five kinds of pressure-broadened coefficients and absorption cross sections are obtained respectively at 287, 297, 311, 315 and 324 K. The temperature-dependent exponents of CO2 are also calculated, these parameters would be a series of corrections and supplements for the existing database. These results may help improve the detection capability of CO2 lidar.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41127901).
    [1]

    Barron E J, Washington W M 1985 Geophysical Monograph Series 32 546

    [2]
    [3]

    Finzi A C, Moore D J P, DeLucia E H, Lichter J, Hofmockel K S, Jackson R B, Kim H S, Matamala R, McCarthy H R, Oren R, Pippen J S, Schlesinger W H 2006 Ecological Society of America 87 15

    [4]
    [5]

    Zhang Y C, Shao S S, Tan K, Hu H L, Hong G L, Zhao Y F 2006 Acta Phys. Sin. 55 987 (in Chinese)[张寅超, 邵石生, 谭锟, 胡欢陵, 洪光烈, 赵曰峰 2006 物理学报 55 987]

    [6]
    [7]

    Wang Z Y, Li H Y, Zhou S K 2001 Physics 3 0 (in Chinese)[王振亚, 李海洋, 周士康 2001 物理 3 0]

    [8]

    Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 335

    [9]
    [10]

    Mao J, Kawa S R 2004 Appl. Opt. 43 914

    [11]
    [12]

    Nakamichi S, Kawaguchi Y, Fukuda H, Enami S, Hashimoto S, Kawasaki M, Umekawa T, Morino T, Suto H, Inoue G 2006 Physical Chemistry Chemical Physics 8 364

    [13]
    [14]
    [15]

    Amediek A, Fix A, Ehret G, Durand Y 2009 Atmospheric Measurement Techniques Discussions 2 1487

    [16]

    Humlček J 1982 J. Quant. Spectrosc. Radiat. Transfer 27 437

    [17]
    [18]

    Bragg S L, Lawton S A, Wiswall C E 1985 Optics Letters 10 321

    [19]
    [20]
    [21]

    Wu C J, Yuan Y Q, Cao B L, Ma Z J, Gong Z B 2003 High Power Laser and Particle Beams 15 9 (in Chinese)[邬承就, 袁怿谦, 曹百灵, 马志军, 龚知本 2003 强激光与粒子束 15 9]

    [22]

    Joly L, Gibert F, Grouiez B, Grossela A, Parvittea B, Durrya G, Zninaria V 2008 J. Quant. Spectrosc. Radiat. Transfer 109 426

    [23]
    [24]

    Rgalia-Jarlot L, Zninari V, Parvitte B, Grossel A, Thomas X, Heyden P V D, Durry G 2006 J. Quant. Spectrosc. Radiat. Transfer101 325

    [25]
    [26]
    [27]

    Lv X J, Wen C S, Li N 2012 Acta Phys. Sin. 61 234205 (in Chinese)[吕晓静, 翁春生, 李宁 2012 物理学报 61 234205]

    [28]
    [29]

    Cai X C, Hu Y H, Tao X H, Hu G L, Zhao N X, Lei W H 2007 Laser Technology 31 515 (in Chinese)[蔡晓春, 胡以华, 陶小红, 胡桂兰, 赵楠翔, 雷武虎 2007 激光技术 31 515]

    [30]
    [31]

    Hong G L, Zhang Y C, Hu S X 2004 Journal of Infrared and Millimeter Waves 23 384 (in Chinese)[洪光烈, 张寅超, 胡顺星 2004 红外与毫米波学报 23 384]

    [32]

    Ma X, Lin H, Ma Y Y, Gong W 2013 Acta Optica Sinica 32 17 (in Chinese)[马昕, 林宏, 马盈盈, 龚威 2013 光学学报 32 17]

    [33]
    [34]

    Dsmtroder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol. 1) (Beijing: Science press) p33 (in Chinese)[戴姆特瑞德 W 著 (姬扬译) 2012激光光谱学(第1卷)(北京:科学出版社)第33页]

    [35]
    [36]
    [37]

    Bragg S L, Kelley J D 1987 Appl Opt 26 506

    [38]

    Shen C, Zhang C, Ni J Z 2013 Infrared 33 1(in Chinese)[沈超, 张玉钧, 倪家正 2013 红外 33 1]

    [39]
    [40]
    [41]

    Lu T X, Lu Z Q 2006 The Theory and Application of Laser Spectroscopy (Hefei: University of Science Technology of China press) p133 (in Chinese)[陆同兴, 路秩群 2006 激光光谱技术原理及应用(合肥:中国科学技术大学出版社) 第133 页]

  • [1]

    Barron E J, Washington W M 1985 Geophysical Monograph Series 32 546

    [2]
    [3]

    Finzi A C, Moore D J P, DeLucia E H, Lichter J, Hofmockel K S, Jackson R B, Kim H S, Matamala R, McCarthy H R, Oren R, Pippen J S, Schlesinger W H 2006 Ecological Society of America 87 15

    [4]
    [5]

    Zhang Y C, Shao S S, Tan K, Hu H L, Hong G L, Zhao Y F 2006 Acta Phys. Sin. 55 987 (in Chinese)[张寅超, 邵石生, 谭锟, 胡欢陵, 洪光烈, 赵曰峰 2006 物理学报 55 987]

    [6]
    [7]

    Wang Z Y, Li H Y, Zhou S K 2001 Physics 3 0 (in Chinese)[王振亚, 李海洋, 周士康 2001 物理 3 0]

    [8]

    Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 335

    [9]
    [10]

    Mao J, Kawa S R 2004 Appl. Opt. 43 914

    [11]
    [12]

    Nakamichi S, Kawaguchi Y, Fukuda H, Enami S, Hashimoto S, Kawasaki M, Umekawa T, Morino T, Suto H, Inoue G 2006 Physical Chemistry Chemical Physics 8 364

    [13]
    [14]
    [15]

    Amediek A, Fix A, Ehret G, Durand Y 2009 Atmospheric Measurement Techniques Discussions 2 1487

    [16]

    Humlček J 1982 J. Quant. Spectrosc. Radiat. Transfer 27 437

    [17]
    [18]

    Bragg S L, Lawton S A, Wiswall C E 1985 Optics Letters 10 321

    [19]
    [20]
    [21]

    Wu C J, Yuan Y Q, Cao B L, Ma Z J, Gong Z B 2003 High Power Laser and Particle Beams 15 9 (in Chinese)[邬承就, 袁怿谦, 曹百灵, 马志军, 龚知本 2003 强激光与粒子束 15 9]

    [22]

    Joly L, Gibert F, Grouiez B, Grossela A, Parvittea B, Durrya G, Zninaria V 2008 J. Quant. Spectrosc. Radiat. Transfer 109 426

    [23]
    [24]

    Rgalia-Jarlot L, Zninari V, Parvitte B, Grossel A, Thomas X, Heyden P V D, Durry G 2006 J. Quant. Spectrosc. Radiat. Transfer101 325

    [25]
    [26]
    [27]

    Lv X J, Wen C S, Li N 2012 Acta Phys. Sin. 61 234205 (in Chinese)[吕晓静, 翁春生, 李宁 2012 物理学报 61 234205]

    [28]
    [29]

    Cai X C, Hu Y H, Tao X H, Hu G L, Zhao N X, Lei W H 2007 Laser Technology 31 515 (in Chinese)[蔡晓春, 胡以华, 陶小红, 胡桂兰, 赵楠翔, 雷武虎 2007 激光技术 31 515]

    [30]
    [31]

    Hong G L, Zhang Y C, Hu S X 2004 Journal of Infrared and Millimeter Waves 23 384 (in Chinese)[洪光烈, 张寅超, 胡顺星 2004 红外与毫米波学报 23 384]

    [32]

    Ma X, Lin H, Ma Y Y, Gong W 2013 Acta Optica Sinica 32 17 (in Chinese)[马昕, 林宏, 马盈盈, 龚威 2013 光学学报 32 17]

    [33]
    [34]

    Dsmtroder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol. 1) (Beijing: Science press) p33 (in Chinese)[戴姆特瑞德 W 著 (姬扬译) 2012激光光谱学(第1卷)(北京:科学出版社)第33页]

    [35]
    [36]
    [37]

    Bragg S L, Kelley J D 1987 Appl Opt 26 506

    [38]

    Shen C, Zhang C, Ni J Z 2013 Infrared 33 1(in Chinese)[沈超, 张玉钧, 倪家正 2013 红外 33 1]

    [39]
    [40]
    [41]

    Lu T X, Lu Z Q 2006 The Theory and Application of Laser Spectroscopy (Hefei: University of Science Technology of China press) p133 (in Chinese)[陆同兴, 路秩群 2006 激光光谱技术原理及应用(合肥:中国科学技术大学出版社) 第133 页]

  • [1] Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei. Measurement of absorption spectrum around 1.572 μm. Acta Physica Sinica, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [2] Zhang Yin-Chao, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling, Hong Guang-Lie, Zhao Yue-Feng. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [3] Zhang Yin-Chao, Zhang Gai-Xia, Zhao Yue-Feng, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [4] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [5] Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200920
    [6] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [7] Wang Yang, Xie Pin-Hua, Li Ang, Zeng Yi, Xu Jin, Si Fu-Qi. Measurement of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy in Hefei city. Acta Physica Sinica, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [8] Liu Hou-Tong, Chen Liang-Fu, Su Lin. Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar. Acta Physica Sinica, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [9] Ling Liu-Yi, Qin Min, Xie Pin-Hua, Hu Ren-Zhi, Fang Wu, Jiang Yu, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED optical source. Acta Physica Sinica, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [10] Hu Shun-Xing, Cao Kai-Fa, Wang Ying-Jian, Wang Min, Fang Xin, Wang Shao-Lin, Zhao Pei-Tao, Fan Guang-Qiang. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [11] Shu Zhi-Feng, Dou Xian-Kang, Wang Zhong-Chun, Shen Fa-Hua, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [12] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [13] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [14] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [15] Di Hui-Ge, Hua Deng-Xin, Wang Yu-Feng, Yan Qing. Investigation on the correction of the Mie scattering lidar's overlapping factor and echo signals over the total detection range. Acta Physica Sinica, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [16] Rao Zhi-Min, Hua Deng-Xin, He Ting-Yao, Le Jing. Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements. Acta Physica Sinica, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [17] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [18] Sun Guo-Dong, Qin Lai-An, Zhang Si-Long, He Feng, Tan Feng-Fu, Jing Xu, Hou Zai-Hong. A new method of measuring boundary value of atmospheric extinction coefficient. Acta Physica Sinica, 2018, 67(5): 054205. doi: 10.7498/aps.67.20172008
    [19] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [20] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
  • Citation:
Metrics
  • Abstract views:  1552
  • PDF Downloads:  587
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2014
  • Accepted Date:  24 April 2014
  • Published Online:  05 September 2014

Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar

  • 1. College of Electronics and Information Engineering, South-central university for nationalities, Wuhan 430074, China;
  • 2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 41127901).

Abstract: In order to improve the inversion precision of CO2 lidar, the fine structure in CO2 absorption spectrum (at around 1.572 m) has been detected accurately, with tunable diode laser absorption spectroscopy (TDLAS) technique in a double beam differential system. Differences between absorption spectra were analyzed. The five kinds of pressure-broadened coefficients and absorption cross sections are obtained respectively at 287, 297, 311, 315 and 324 K. The temperature-dependent exponents of CO2 are also calculated, these parameters would be a series of corrections and supplements for the existing database. These results may help improve the detection capability of CO2 lidar.

Reference (41)

Catalog

    /

    返回文章
    返回