Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate measurement of templates and imprinted grating structures using Mueller matrix ellipsometry

Chen Xiu-Guo Liu Shi-Yuan Zhang Chuan-Wei Wu Yi-Ping Ma Zhi-Chao Sun Tang-You Xu Zhi-Mou

Accurate measurement of templates and imprinted grating structures using Mueller matrix ellipsometry

Chen Xiu-Guo, Liu Shi-Yuan, Zhang Chuan-Wei, Wu Yi-Ping, Ma Zhi-Chao, Sun Tang-You, Xu Zhi-Mou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to control nanoimprint lithography (NIL) processes for achieving good fidelity, the fast, low-cost, non-destructive and accurate measurement of geometric parameters of templates and imprinted grating structures is of great importance. Compared with conventional ellipsometric scatterometry, which only obtains two ellipsometric angles and has 2 changeable measurement conditions, i.e., the wavelength and the incidence angle, Mueller matrix ellipsometry (MME) can provide up to 16 quantities of a 4×4 Mueller matrix in each measurement with 3 changeable measurement conditions, i.e., the wavelength, the incidence angle and the azimuthal angle. Therefore, MME can acquire much more useful information about the sample. It is expected that much more accurate measurements of nanostructures can be achieved by choosing proper measurement configurations and completely using the rich information hidden in the measured Mueller matrices. Accordingly, the templates and imprinted grating structures in NIL processes are measured using an in-house developed Mueller matrix ellipsometer. We experimentally demonstrate that more accurate quantification of geometric parameters, such as line width, line height, sidewall angle and residual layer thickness, can be achieved by performing MME measurements in the optimal configuration and meanwhile by incorporating depolarization effects into the optical model. Moreover, as for the imprinted grating structures, the residual layer thickness variation over the illumination spot can also be directly determined by MME. The comparison between MME-extracted template and imprinted resist profiles also indicates an excellent fidelity of the nanoimprint pattern transfer process.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91023032, 51005091), the National Instrument Development Specific Project of China (Grant No. 2011YQ160002), and the Program for Changjiang Scholars and Innovative Research Team in University of China.
    [1]

    Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85

    [2]

    Chou S Y, Krauss P R, Zhang W, Guo L, Zhuang L 1997 J. Vac. Sci. Technol. B 15 2897

    [3]

    Fuard D, Perret C, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069

    [4]

    Patrick H J, Germer T A, Ding Y F, Ro H W, Richter L J, Soles C L 2008 Appl. Phys. Lett. 93 233015

    [5]

    Yu Z N, Hwu J, Liu Y D, Su Z P, Yang H, Wang H Y, Hu W, Xu Y, Kurataka N, Hsu Y, Lee S, Gauzner G, Lee K, Kuo D 2010 J. Vac. Sci. Technol. B 28 C6M130

    [6]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W N, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [7]

    Azzam R M A, Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland)

    [8]

    Chen L Y, Hou X Y, Huang D M, Zhang F L, Feng X W, Yang M, Su Y, Qian Y H, Wang X 1994 Chin. Phys. 3 595

    [9]

    Zhang X J, Ma H L, Li Y X, Wang Q P, Ma J, Zong F J, Xiao H D 2006 Chin. Phys. 15 2385

    [10]

    Zhang T, Yin J, Ding L H, Zhang W F 2013 Chin. Phys. B 22 117801

    [11]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983

    [12]

    Niu X, Jakatdar N, Bao J W, Spanos C J 2001 IEEE Trans. Semicond. Manuf. 14 97

    [13]

    Silver R, Germer T, Attota R, Barnes B M, Bundary B, Allgair J, Marx E, Jun J 2007 Proc. SPIE 6518 65180U

    [14]

    Novikova T, De Martino A, Hatit S B, Drévillon B 2006 Appl. Opt. 45 3688

    [15]

    Li J, Hwu J J, Liu Y D, Rabello S, Liu Z, Hu J T 2010 J. Micro Nanolith. MEMS MOEMS 9 041305

    [16]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 J. Micro Nanolith. MEMS MOEMS 12 033013

    [17]

    Chen X G, Zhang C W, Liu S Y 2013 Appl. Phys. Lett. 103 151605

    [18]

    Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165

    [19]

    Collins R W, Koh J 1999 J. Opt. Soc. Am. A 16 1997

    [20]

    Liu S Y, Chen X G, Zhang C W 2014 ECS Trans. 60 237

    [21]

    Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (New York: Wiley)

    [22]

    Liu S Y 2014 J. Mech. Eng. 50 1(in Chinese)[刘世元 2014 机械工程学报 50 1]

    [23]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [24]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [25]

    Liu S Y, Ma Y, Chen X G, Zhang C W 2012 Opt. Eng. 51 081504

    [26]

    Chen X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[陈修国 2013 博士学位论文 (武汉: 华中科技大学)]

    [27]

    Gil J J, Bernabeu E 1986 Opt. Acta 33 185

    [28]

    van de Hulst H C 1957 Light Scattering by Small Particles (New York: Wiley)

    [29]

    Zhang C W, Liu S Y, Shi T L, Tang Z R 2009 J. Opt. Soc. Am. A 26 2327

    [30]

    Chen X G, Liu S Y, Zhang C W, Zhu J L 2013 Measurement 46 2638

    [31]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 Appl. Opt. 52 6727

    [32]

    Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys. Sin. 62 168102(in Chinese)[张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元 2013 物理学报 62 168102]

    [33]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104(in Chinese)[彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [34]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 J. Appl. Phys. 83 3323

    [35]

    Forouhi A R, Bloomer I 1988 Phys. Rev. B 38 1865

    [36]

    Pochi Y 2005 Optical Waves in Layered Media (New York: Wiley)

    [37]

    Chen X G, Liu S Y, Gu H G, Zhang C W 2014 Thin Solid Films, doi: 10.1016/j.tsf.2014.01.049

  • [1]

    Chou S Y, Krauss P R, Renstrom P J 1996 Science 272 85

    [2]

    Chou S Y, Krauss P R, Zhang W, Guo L, Zhuang L 1997 J. Vac. Sci. Technol. B 15 2897

    [3]

    Fuard D, Perret C, Farys V, Gourgon C, Schiavone P 2005 J. Vac. Sci. Technol. B 23 3069

    [4]

    Patrick H J, Germer T A, Ding Y F, Ro H W, Richter L J, Soles C L 2008 Appl. Phys. Lett. 93 233015

    [5]

    Yu Z N, Hwu J, Liu Y D, Su Z P, Yang H, Wang H Y, Hu W, Xu Y, Kurataka N, Hsu Y, Lee S, Gauzner G, Lee K, Kuo D 2010 J. Vac. Sci. Technol. B 28 C6M130

    [6]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W N, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [7]

    Azzam R M A, Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland)

    [8]

    Chen L Y, Hou X Y, Huang D M, Zhang F L, Feng X W, Yang M, Su Y, Qian Y H, Wang X 1994 Chin. Phys. 3 595

    [9]

    Zhang X J, Ma H L, Li Y X, Wang Q P, Ma J, Zong F J, Xiao H D 2006 Chin. Phys. 15 2385

    [10]

    Zhang T, Yin J, Ding L H, Zhang W F 2013 Chin. Phys. B 22 117801

    [11]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983

    [12]

    Niu X, Jakatdar N, Bao J W, Spanos C J 2001 IEEE Trans. Semicond. Manuf. 14 97

    [13]

    Silver R, Germer T, Attota R, Barnes B M, Bundary B, Allgair J, Marx E, Jun J 2007 Proc. SPIE 6518 65180U

    [14]

    Novikova T, De Martino A, Hatit S B, Drévillon B 2006 Appl. Opt. 45 3688

    [15]

    Li J, Hwu J J, Liu Y D, Rabello S, Liu Z, Hu J T 2010 J. Micro Nanolith. MEMS MOEMS 9 041305

    [16]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 J. Micro Nanolith. MEMS MOEMS 12 033013

    [17]

    Chen X G, Zhang C W, Liu S Y 2013 Appl. Phys. Lett. 103 151605

    [18]

    Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165

    [19]

    Collins R W, Koh J 1999 J. Opt. Soc. Am. A 16 1997

    [20]

    Liu S Y, Chen X G, Zhang C W 2014 ECS Trans. 60 237

    [21]

    Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (New York: Wiley)

    [22]

    Liu S Y 2014 J. Mech. Eng. 50 1(in Chinese)[刘世元 2014 机械工程学报 50 1]

    [23]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [24]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [25]

    Liu S Y, Ma Y, Chen X G, Zhang C W 2012 Opt. Eng. 51 081504

    [26]

    Chen X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[陈修国 2013 博士学位论文 (武汉: 华中科技大学)]

    [27]

    Gil J J, Bernabeu E 1986 Opt. Acta 33 185

    [28]

    van de Hulst H C 1957 Light Scattering by Small Particles (New York: Wiley)

    [29]

    Zhang C W, Liu S Y, Shi T L, Tang Z R 2009 J. Opt. Soc. Am. A 26 2327

    [30]

    Chen X G, Liu S Y, Zhang C W, Zhu J L 2013 Measurement 46 2638

    [31]

    Chen X G, Liu S Y, Zhang C W, Jiang H 2013 Appl. Opt. 52 6727

    [32]

    Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys. Sin. 62 168102(in Chinese)[张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元 2013 物理学报 62 168102]

    [33]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104(in Chinese)[彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [34]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 J. Appl. Phys. 83 3323

    [35]

    Forouhi A R, Bloomer I 1988 Phys. Rev. B 38 1865

    [36]

    Pochi Y 2005 Optical Waves in Layered Media (New York: Wiley)

    [37]

    Chen X G, Liu S Y, Gu H G, Zhang C W 2014 Thin Solid Films, doi: 10.1016/j.tsf.2014.01.049

  • [1] Chen Xiu-Guo, Yuan Kui, Du Wei-Chao, Chen Jun, Jiang Hao, Zhang Chuan-Wei, Liu Shi-Yuan. Large-scale nanostructure metrology using Mueller matrix imaging ellipsometry. Acta Physica Sinica, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [2] Xia Wei-Wei, Zheng Guo-Heng, Li Tian-Hao, Liu Chao-Ran, Li Dong-Xue, Duan Zhi-Yong. Factors influencing filling degree in nanoimprint lithography with pseudoplastic fluid. Acta Physica Sinica, 2013, 62(18): 188105. doi: 10.7498/aps.62.188105
    [3] Ma Zhi-Chao, Xu Zhi-Mou, Peng Jing, Sun Tang-You, Chen Xiu-Guo, Zhao Wen-Ning, Liu Si-Si, Wu Xing-Hui, Zou Chao, Liu Shi-Yuan. Nondestructive detection of nano grating by generalized ellipsometer. Acta Physica Sinica, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [4] Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, Xu Hai-Feng, Chen Cun-Hua, Peng Jing. Study on porous silicon template for nanoimprint lithography. Acta Physica Sinica, 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [5] Guo Yan-Feng, Guo Xi, Tang Wei-Hua, Chen Lei-Ming. Molds for nanoimprinting made by modified photoresist. Acta Physica Sinica, 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
    [6] Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, He Jian, Xu Hai-Feng, Zhang Xue-Ming, Liu Shi-Yuan. The fabrication of the antireflective periodic nano-arrary structure on Si surface using nanoimprint lithography and the study on its properties. Acta Physica Sinica, 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [7] Li Tian-Hao, Zheng Guo-Heng, Liu Chao-Ran, Xia Wei-Wei, Li Dong-Xue, Duan Zhi-Yong. Analysis of gas isolation by prominent O-ring on the mold in compressional gas cushion press nanoimprint lithography. Acta Physica Sinica, 2013, 62(6): 068103. doi: 10.7498/aps.62.068103
    [8] Lu Nai-Yan, Weng Yu-Yan. Pattern transfer and molecular chain orientation modulation by soft template during the nanoimprint lithography. Acta Physica Sinica, 2014, 63(22): 228104. doi: 10.7498/aps.63.228104
    [9] Peng Jing, Xu Zhi-Mou, Wu Xiao-Feng, Sun Tang-You. A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography. Acta Physica Sinica, 2013, 62(3): 036104. doi: 10.7498/aps.62.036104
    [10] Xie Hui-Min, Dai Fu-Long, Guo Hai-Ming, Liu Hong-Wen, Wang Ye-Liang, Gao Hong-Jun. Moiré fringes of HOPG and mica in scanning probe microscopy. Acta Physica Sinica, 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
    [11] HSIX HSIEN-CHIEH. ON THE TRIGGERING PROCESSES OF SCHMITT CIRCUIT AND THE ACCURACY OF SUCH CIRCUITS IN MEASURING THE AMPLITUDE OF SHORT PULSES. Acta Physica Sinica, 1957, 13(6): 500-514. doi: 10.7498/aps.13.500
    [12] Zhang Ji-Tao, Wu Xue-Jian, Li Yan, Wei Hao-Yun. Method for improving the accuracy of step height measurement based on optical frequency comb. Acta Physica Sinica, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [13] Wen Jin-Hui, Lei Liang, Jiao Zhong-Xing, Lai Tian-Shu, Lin Wei-Zhu. Comparison of accuracy between two spectral phase interferometric methods in the characterization of complex pulses. Acta Physica Sinica, 2006, 55(4): 1883-1888. doi: 10.7498/aps.55.1883
    [14] Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li, Mu Quan-Quan. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [15] Liao Nai-Man, Li Wei, Jiang Ya-Dong, Wu Zhi-Ming, Kuang Yue-Jun, Qi Kang-Cheng, Li Shi-Bin. Thickness and optical constant determination of hydrogenated amorphous silicon thin film from transmittance spectra of ellipsometer. Acta Physica Sinica, 2008, 57(3): 1542-1547. doi: 10.7498/aps.57.1542
    [16] Cao Nian-Wen, Liu Wen-Qing, Zhang Yu-Jun. . Acta Physica Sinica, 2000, 49(4): 647-653. doi: 10.7498/aps.49.647
    [17] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [18] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [19] YU BAO-LONG, ZHU CONG-SHAN, GAN FU-XI. MEASUREMENT ON THE THERMO OPTIC COEFFICIENT dn/dT OF SEMICONDUCTOR PbS NANOPARTICLES AND THE STUDY ON THEIR OPTICAL LIMITING EFFECTS. Acta Physica Sinica, 1997, 46(12): 2394-2400. doi: 10.7498/aps.46.2394
    [20] Wang Cheng-Jie, Shi Fa-Zhan, Wang Peng-Fei, Duan Chang-Kui, Du Jiang-Feng. Nanoscale magnetic field sensing and imaging based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
  • Citation:
Metrics
  • Abstract views:  774
  • PDF Downloads:  991
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2014
  • Accepted Date:  05 May 2014
  • Published Online:  05 September 2014

Accurate measurement of templates and imprinted grating structures using Mueller matrix ellipsometry

  • 1. State Key Laboratory for Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
  • 2. College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
  • 3. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 91023032, 51005091), the National Instrument Development Specific Project of China (Grant No. 2011YQ160002), and the Program for Changjiang Scholars and Innovative Research Team in University of China.

Abstract: In order to control nanoimprint lithography (NIL) processes for achieving good fidelity, the fast, low-cost, non-destructive and accurate measurement of geometric parameters of templates and imprinted grating structures is of great importance. Compared with conventional ellipsometric scatterometry, which only obtains two ellipsometric angles and has 2 changeable measurement conditions, i.e., the wavelength and the incidence angle, Mueller matrix ellipsometry (MME) can provide up to 16 quantities of a 4×4 Mueller matrix in each measurement with 3 changeable measurement conditions, i.e., the wavelength, the incidence angle and the azimuthal angle. Therefore, MME can acquire much more useful information about the sample. It is expected that much more accurate measurements of nanostructures can be achieved by choosing proper measurement configurations and completely using the rich information hidden in the measured Mueller matrices. Accordingly, the templates and imprinted grating structures in NIL processes are measured using an in-house developed Mueller matrix ellipsometer. We experimentally demonstrate that more accurate quantification of geometric parameters, such as line width, line height, sidewall angle and residual layer thickness, can be achieved by performing MME measurements in the optimal configuration and meanwhile by incorporating depolarization effects into the optical model. Moreover, as for the imprinted grating structures, the residual layer thickness variation over the illumination spot can also be directly determined by MME. The comparison between MME-extracted template and imprinted resist profiles also indicates an excellent fidelity of the nanoimprint pattern transfer process.

Reference (37)

Catalog

    /

    返回文章
    返回