搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高准确度的钙离子光频标

管桦 黄垚 李承斌 高克林

高准确度的钙离子光频标

管桦, 黄垚, 李承斌, 高克林
PDF
导出引用
导出核心图
  • 近年来,冷原子技术和激光技术促进了高精度光频标的发展,有望在建立时间基准、推动基础研究和满足国家需求等方面发挥重要的作用.本文介绍了中国科学院武汉物理与数学研究所近年来在高准确度钙离子(40Ca+)光频标研究方面的进展:采用新的ULE腔系统,实现了729 nm钟跃迁激光器1–100 s的频率稳定度均优于2×10-15,通过对外场和环境效应的控制及克服,特别是囚禁离子运动效应的抑制,获得单个钙离子光频标的不确定度优于5.5×10-17;通过两台光频标的比对,测得20000 s的稳定度也进入10-17量级;基于高精度钙离子光频标平台,进行了相关精密测量的工作,包括:基于全球定位系统的超高精度远程光频绝对值测量方案,第二次测量了钙离子的光频跃迁绝对值,该测量结果再次被国际时间频率咨询委员会采纳,更新了钙离子的频率推荐值;精确测量了钙离子的钟跃迁魔幻波长,由此提出新型的全光囚禁离子光频标的方法;精密测量了钙离子的亚稳态寿命等参数.以上工作推动了基于冷原子的精密测量工作.
      通信作者: 高克林, klgao@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91336211,11474318,11622434,11774388)、国家重点基础研究发展计划(批准号:2012CB821301,2005CB724502)和中国科学院先导专项(批准号XDB21030100)资助的课题.
    [1]

    Bergquist J C, Jefferts S R, Wineland D J 2001 Phys. Today 54 37

    [2]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Margolis H, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K, Gill P 2004 Science 306 1355

    [4]

    Madej A A, Dubé P, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [5]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [6]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [7]

    Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hansel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D, Laurent Ph. 2009 Phys. Rev. Lett. 102 023002

    [8]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [9]

    Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321

    [10]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W, Hinkley N 2008 Science 319 1805

    [11]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [12]

    McFerran J, Yi L, Mejri S, Manno S, Zhang W, Guéna J, le Coq Y, Bize S 2012 Phys. Rev. Lett. 108 183004

    [13]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [16]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [17]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [18]

    Lin Y, Wang Q, Li Y, Meng F, Lin B, Zang E, Sun Z, Fang F, Li T, Fang Z 2015 Chin. Phys. Lett. 32 090601

    [19]

    Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L, Xu X 2015 Laser Phys. Lett. 12 025501

    [20]

    Liu H, Zhang X, Jiang K, Wang J, Zhu Q, Xiong Z, He L, Lyu B 2017 Chin. Phys. Lett. 34 020601

    [21]

    Wang Y, Yin M, Ren J, Xu Q, Lu B, Han J, Guo Y, Chang H 2018 Chin. Phys. B 27 023701

    [22]

    Che H, Deng K, Xu Z, Yuan W, Zhang J, Lu Z 2017 Phys. Rev. A 96 013417

    [23]

    Shang J, Cui K, Cao J, Wang S, Chao S, Shu H, Huang X 2016 Chin. Phys. Lett. 33 103701

    [24]

    Zou H, Wu Y, Chen G, Shen Y, Liu Q 2015 Chin. Phys. Lett. 32 054207

    [25]

    Fu X, Fang S, Zhao R, Zhang Y, Huang J, Sun J, Xu Z, Wang Y 2018 Chin. Opt. Lett. (Accepted)

    [26]

    Shi T, Pan D, Chang P, Shang H, Chen J 2018 Rev. Sci. Instrum. 89 043102

    [27]

    Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M, Vedel F 2004 Phys. Lett. A 331 298

    [28]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [29]

    Shu H, Guan H, Huang X, Li J, Gao K 2005 Chin. Phys. Lett. 22 1641

    [30]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [31]

    Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X, Gao K 2011 Opt. Commun. 284 217

    [32]

    Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X, Gao K 2011 Phys. Rev. A 84 053841

    [33]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [34]

    Bian W, Huang Y, Guan H, Liu P, Ma L, Gao K 2016 Rev. Sci. Instrum. 87 063121

    [35]

    Liu P, Huang Y, Bian W, Shao H, Guan H, Tang Y, Li C, Mitroy J, Gao K 2015 Phys. Rev. Lett. 114 223001

    [36]

    Shao H, Huang Y, Guan H, Qian Y, Gao K 2016 Phys. Rev. A 94 042507

    [37]

    Guan H, Shao H, Qian Y, Huang Y, Liu P, Bian W, Li C, Sahoo B K, Gao K 2015 Phys. Rev. A 91 022511

    [38]

    Shao H, Huang Y, Guan H, Li C, Shi T, Gao K 2017 Phys. Rev. A 95 053415

    [39]

    Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M, Stacey D N 2000 Phys. Rev. A 62 032503

    [40]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R 2005 Phys. Rev. A 71 032504

    [41]

    Guan H, Guo B, Huang G, Shu H, Huang X, Gao K 2007 Opt. Commun. 274 182

    [42]

    Qu W C, Huang Y, Guan H, Huang X R, Gao K L 2011 Chin. J. Lasers 38 0803008 (in Chinese) [屈万成, 黄垚, 管桦, 黄学人, 高克林 2011 中国激光 38 0803008]

    [43]

    Bureau International des Poids et Mesures (BIPM), Consultative Committee for Time and Frequency (CCTF) Report of the 20th Meeting (September 17-18, 2015) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF20.pdf

    [44]

    Tang Y, Qiao H, Shi T, Mitroy J 2013 Phys. Rev. A 87 042517

  • [1]

    Bergquist J C, Jefferts S R, Wineland D J 2001 Phys. Today 54 37

    [2]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Margolis H, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K, Gill P 2004 Science 306 1355

    [4]

    Madej A A, Dubé P, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [5]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [6]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [7]

    Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hansel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D, Laurent Ph. 2009 Phys. Rev. Lett. 102 023002

    [8]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [9]

    Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321

    [10]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W, Hinkley N 2008 Science 319 1805

    [11]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [12]

    McFerran J, Yi L, Mejri S, Manno S, Zhang W, Guéna J, le Coq Y, Bize S 2012 Phys. Rev. Lett. 108 183004

    [13]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [16]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [17]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [18]

    Lin Y, Wang Q, Li Y, Meng F, Lin B, Zang E, Sun Z, Fang F, Li T, Fang Z 2015 Chin. Phys. Lett. 32 090601

    [19]

    Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L, Xu X 2015 Laser Phys. Lett. 12 025501

    [20]

    Liu H, Zhang X, Jiang K, Wang J, Zhu Q, Xiong Z, He L, Lyu B 2017 Chin. Phys. Lett. 34 020601

    [21]

    Wang Y, Yin M, Ren J, Xu Q, Lu B, Han J, Guo Y, Chang H 2018 Chin. Phys. B 27 023701

    [22]

    Che H, Deng K, Xu Z, Yuan W, Zhang J, Lu Z 2017 Phys. Rev. A 96 013417

    [23]

    Shang J, Cui K, Cao J, Wang S, Chao S, Shu H, Huang X 2016 Chin. Phys. Lett. 33 103701

    [24]

    Zou H, Wu Y, Chen G, Shen Y, Liu Q 2015 Chin. Phys. Lett. 32 054207

    [25]

    Fu X, Fang S, Zhao R, Zhang Y, Huang J, Sun J, Xu Z, Wang Y 2018 Chin. Opt. Lett. (Accepted)

    [26]

    Shi T, Pan D, Chang P, Shang H, Chen J 2018 Rev. Sci. Instrum. 89 043102

    [27]

    Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M, Vedel F 2004 Phys. Lett. A 331 298

    [28]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [29]

    Shu H, Guan H, Huang X, Li J, Gao K 2005 Chin. Phys. Lett. 22 1641

    [30]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [31]

    Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X, Gao K 2011 Opt. Commun. 284 217

    [32]

    Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X, Gao K 2011 Phys. Rev. A 84 053841

    [33]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [34]

    Bian W, Huang Y, Guan H, Liu P, Ma L, Gao K 2016 Rev. Sci. Instrum. 87 063121

    [35]

    Liu P, Huang Y, Bian W, Shao H, Guan H, Tang Y, Li C, Mitroy J, Gao K 2015 Phys. Rev. Lett. 114 223001

    [36]

    Shao H, Huang Y, Guan H, Qian Y, Gao K 2016 Phys. Rev. A 94 042507

    [37]

    Guan H, Shao H, Qian Y, Huang Y, Liu P, Bian W, Li C, Sahoo B K, Gao K 2015 Phys. Rev. A 91 022511

    [38]

    Shao H, Huang Y, Guan H, Li C, Shi T, Gao K 2017 Phys. Rev. A 95 053415

    [39]

    Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M, Stacey D N 2000 Phys. Rev. A 62 032503

    [40]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R 2005 Phys. Rev. A 71 032504

    [41]

    Guan H, Guo B, Huang G, Shu H, Huang X, Gao K 2007 Opt. Commun. 274 182

    [42]

    Qu W C, Huang Y, Guan H, Huang X R, Gao K L 2011 Chin. J. Lasers 38 0803008 (in Chinese) [屈万成, 黄垚, 管桦, 黄学人, 高克林 2011 中国激光 38 0803008]

    [43]

    Bureau International des Poids et Mesures (BIPM), Consultative Committee for Time and Frequency (CCTF) Report of the 20th Meeting (September 17-18, 2015) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF20.pdf

    [44]

    Tang Y, Qiao H, Shi T, Mitroy J 2013 Phys. Rev. A 87 042517

  • [1] 耿俊娴, 刘丽炜, 屈军乐, 李少强, 胡睿, 王诗琪, 吕云杰, 黄春. 近红外光刺激神经细胞钙离子光激活研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200489
    [2] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [3] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [4] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [5] 常宏, 王心亮, 田晓, 张首刚, 高峰. 锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究. 物理学报, 2011, 60(5): 050601. doi: 10.7498/aps.60.050601
    [6] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [7] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [8] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [9] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [10] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [11] 杨治虎, 赵永涛, 殷纬纬, 李宁溪, 张小安. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [12] 林宏奂, 蒋东镔, 王建军, 李明中, 张锐, 邓颖, 许党朋, 党钊. 用于神光Ⅲ原型装置精密物理实验的时标激光系统. 物理学报, 2011, 60(2): 025208. doi: 10.7498/aps.60.025208
    [13] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [14] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [15] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量. 物理学报, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [16] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [17] 刘朝阳, 顾思洪, 杜润昌, 陈杰华. CPT原子频标实验研究. 物理学报, 2009, 58(9): 6117-6121. doi: 10.7498/aps.58.6117
    [18] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [19] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量. 物理学报, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
    [20] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
  • 引用本文:
    Citation:
计量
  • 文章访问数:  592
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-03
  • 修回日期:  2018-06-05
  • 刊出日期:  2018-08-20

高准确度的钙离子光频标

  • 1. 中国科学院武汉物理与数学研究所, 波谱与原子分子物理国家重点实验室, 武汉 430071;
  • 2. 中国科学院武汉物理与数学研究所, 中国科学院原子频标重点实验室, 武汉 430071;
  • 3. 中国科学院冷原子物理中心(武汉), 武汉 430071
  • 通信作者: 高克林, klgao@wipm.ac.cn
    基金项目: 

    国家自然科学基金(批准号:91336211,11474318,11622434,11774388)、国家重点基础研究发展计划(批准号:2012CB821301,2005CB724502)和中国科学院先导专项(批准号XDB21030100)资助的课题.

摘要: 近年来,冷原子技术和激光技术促进了高精度光频标的发展,有望在建立时间基准、推动基础研究和满足国家需求等方面发挥重要的作用.本文介绍了中国科学院武汉物理与数学研究所近年来在高准确度钙离子(40Ca+)光频标研究方面的进展:采用新的ULE腔系统,实现了729 nm钟跃迁激光器1–100 s的频率稳定度均优于2×10-15,通过对外场和环境效应的控制及克服,特别是囚禁离子运动效应的抑制,获得单个钙离子光频标的不确定度优于5.5×10-17;通过两台光频标的比对,测得20000 s的稳定度也进入10-17量级;基于高精度钙离子光频标平台,进行了相关精密测量的工作,包括:基于全球定位系统的超高精度远程光频绝对值测量方案,第二次测量了钙离子的光频跃迁绝对值,该测量结果再次被国际时间频率咨询委员会采纳,更新了钙离子的频率推荐值;精确测量了钙离子的钟跃迁魔幻波长,由此提出新型的全光囚禁离子光频标的方法;精密测量了钙离子的亚稳态寿命等参数.以上工作推动了基于冷原子的精密测量工作.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回