Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Increase in light extraction efficiency of vertical light emitting diodes by a photo-electro-chemical etching method

Gong Zhi-Na Yun Feng Ding Wen Zhang Ye Guo Mao-Feng Liu Shuo Huang Ya-Ping Liu Hao Wang Shuai Feng Lun-Gang Wang Jiang-Teng

Increase in light extraction efficiency of vertical light emitting diodes by a photo-electro-chemical etching method

Gong Zhi-Na, Yun Feng, Ding Wen, Zhang Ye, Guo Mao-Feng, Liu Shuo, Huang Ya-Ping, Liu Hao, Wang Shuai, Feng Lun-Gang, Wang Jiang-Teng
PDF
Get Citation
  • The rate of photo-electro-chemical (PEC) etching on N-polar n-GaN using vertical light emitting diodes (V-LEDs) has been investigated in detail, by varying the etching parameters (etchant concentration, etching duration and light intensity). V-LED with optimal hexagonal pyramid structure (the side-wall angle is 31°) has been fabricated, and then the influence of the PEC etching on the electrical and optical properties of V-LED has been analyzed. After PEC etching, the sample has good ohmic contact with the electrode and has lower contact resistance than a reference sample. The electrical characteristics have a better improvement. And the light output power has improved obviously after PEC etching, which shows 86.1% enhancement at 20 mA. Effect of side-wall angle of the pyramids on light extraction efficiency (LEE) in V-LEDs is theoretically calculated by finite difference time domain (FDTD) method. Simulation results show that the LEE is significantly increased for the sidewall angle between 20° and 40°, and the maximum enhancement is realized at a side-wall angle of 23.6° (the total reflection angle at the GaN/air interface).
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), and the Xi'
    [1]

    Park J, Shin M, Lee C C 2004 Opt. Lett. 29 2656

    [2]

    Kim H, Choi K K, Kim K K, Cho J, Lee S N, Park Y, Kwak J S, Seong T Y 2008 Opt. Lett. 33 1273

    [3]

    Zheng C, Zhang S M, Wang H, Liu J P, Wang H B, Li Z C, Feng M X, Zhao D G, Liu Z S, Jiang D S, Yang H 2012 Chin Phys. Lett. 29 017301

    [4]

    Furhmann D, Netzel C, Rossow U, Hangleiter A 2006 Appl. Phys. Lett. 88 071105

    [5]

    Huh C, Lee K S, Kang E J, Park S J 2003 J. Appl. Phys. 93 9383

    [6]

    Huang H W, Kuo H C, Lai C F, Lee C E, Chiu C W, Lu T C, Wang S C, Lin C H, Leung K M 2007 IEEE Photon. Technol. Lett. 19 565

    [7]

    Zhang S Y, Xiu X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R, Zheng Y D 2014 Chin. Phys. B 23 058101

    [8]

    Jewell J, Simeonov D, Huang S-C, Hu Y-L, Nakamura S, Speck J, Weisbuch C 2012 Appl. Phys. Lett. 100 171105

    [9]

    Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y, Li J M 2014 Chin. Phys. B 23 028504

    [10]

    Shen C F, Chang S J, Chen W S, Ko T K, Kuo C T, Shei S C 2007 IEEE Photon. Technol. Lett. 19 780

    [11]

    Minsky M S, White M, Hu E L 1996 Appl. Phys. Lett. 68 1531

    [12]

    Seo J W, Oh C S, Yang J W, Yang G M, Lim K Y, Yoon C J, Lee H J 2001 Phys. Status Solidi A 188 403

    [13]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [14]

    Palacios T, Calle F, Varela M, Ballesteros C, Monroy E, Naranjo F B, Sanchez-Garacia M A, Calleja E, Munoz E 2000 Semicond. Sci. Technol. 15 996

    [15]

    Yu T J (于彤军) 2011 CN 102252829 A

    [16]

    Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Devices 57 79

    [17]

    Wang L C, Ma J, Liu Z Q, Yi X Y, Yuan G D, Wang G H 2013 J. Appl. Phys. 114 133101

    [18]

    Ng H M, Weimann N G, Chowdhury A 2003 J. Appl. Phys. 94 650

    [19]

    Chung R B, Chen H T, Pan C C, Ha J S, DenBaars S P, Nakamura S 2012 Appl. Phys. Lett. 100 091104

    [20]

    Kuo M L, Kim Y S, Hsieh M L, Lin S Y 2011 Nano Lett. 11 476

  • [1]

    Park J, Shin M, Lee C C 2004 Opt. Lett. 29 2656

    [2]

    Kim H, Choi K K, Kim K K, Cho J, Lee S N, Park Y, Kwak J S, Seong T Y 2008 Opt. Lett. 33 1273

    [3]

    Zheng C, Zhang S M, Wang H, Liu J P, Wang H B, Li Z C, Feng M X, Zhao D G, Liu Z S, Jiang D S, Yang H 2012 Chin Phys. Lett. 29 017301

    [4]

    Furhmann D, Netzel C, Rossow U, Hangleiter A 2006 Appl. Phys. Lett. 88 071105

    [5]

    Huh C, Lee K S, Kang E J, Park S J 2003 J. Appl. Phys. 93 9383

    [6]

    Huang H W, Kuo H C, Lai C F, Lee C E, Chiu C W, Lu T C, Wang S C, Lin C H, Leung K M 2007 IEEE Photon. Technol. Lett. 19 565

    [7]

    Zhang S Y, Xiu X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R, Zheng Y D 2014 Chin. Phys. B 23 058101

    [8]

    Jewell J, Simeonov D, Huang S-C, Hu Y-L, Nakamura S, Speck J, Weisbuch C 2012 Appl. Phys. Lett. 100 171105

    [9]

    Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y, Li J M 2014 Chin. Phys. B 23 028504

    [10]

    Shen C F, Chang S J, Chen W S, Ko T K, Kuo C T, Shei S C 2007 IEEE Photon. Technol. Lett. 19 780

    [11]

    Minsky M S, White M, Hu E L 1996 Appl. Phys. Lett. 68 1531

    [12]

    Seo J W, Oh C S, Yang J W, Yang G M, Lim K Y, Yoon C J, Lee H J 2001 Phys. Status Solidi A 188 403

    [13]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [14]

    Palacios T, Calle F, Varela M, Ballesteros C, Monroy E, Naranjo F B, Sanchez-Garacia M A, Calleja E, Munoz E 2000 Semicond. Sci. Technol. 15 996

    [15]

    Yu T J (于彤军) 2011 CN 102252829 A

    [16]

    Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Devices 57 79

    [17]

    Wang L C, Ma J, Liu Z Q, Yi X Y, Yuan G D, Wang G H 2013 J. Appl. Phys. 114 133101

    [18]

    Ng H M, Weimann N G, Chowdhury A 2003 J. Appl. Phys. 94 650

    [19]

    Chung R B, Chen H T, Pan C C, Ha J S, DenBaars S P, Nakamura S 2012 Appl. Phys. Lett. 100 091104

    [20]

    Kuo M L, Kim Y S, Hsieh M L, Lin S Y 2011 Nano Lett. 11 476

  • [1] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [2] Chen Jian, Li Hai-Hua, Wang Qing-Kang, Li Xiao-Li. Research of LED light extraction efficiency of photonic crystal with square and hexagonal lattice. Acta Physica Sinica, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [3] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [4] Wu Jun, Ma Zhi-Bin, Shen Wu-Lin, Yan Lei, Pan Xin, Wang Jian-Hua. Influence of nitrogen in diamond films on plasma etching. Acta Physica Sinica, 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [5] Zheng Shu-Lin, Song Yi-Xu, Sun Xiao-Min. A three-dimensional surface evolution algorithm based on cellular model for etching process. Acta Physica Sinica, 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [6] Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang. Molecular dynamics simulation of Lag effect in fluorine plasma etching Si. Acta Physica Sinica, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [7] Chen Yi-Xin, Shen Guang-Di, Gao Zhi-Yuan, Guo Wei-Ling, Zhang Guang-Chen, Han Jun, Zhu Yan-Xu. Relationship between light efficiency and juction temperature of high power AlGaInP light-emitting diode. Acta Physica Sinica, 2011, 60(8): 087206. doi: 10.7498/aps.60.087206
    [8] Xu Xing-Sheng, Sun Zeng-Hui, Du Wei, Lu Lin, Chen Hong-Da, Xiong Zhi-Gang, Jin Ai-Zi, Zhang Dao-Zhong. Optical properties of semiconductor quantum-well material using photonic crystal fabricated by micro-fabrication machine. Acta Physica Sinica, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [9] Zhang Jun-Bing, Zeng Xiang-Hua, Lin Yue-Ming, Bo Lin. Optimization of the electrode shape of AlGaInP LED. Acta Physica Sinica, 2008, 57(9): 5881-5886. doi: 10.7498/aps.57.5881
    [10] Lü Xiao-Dan, Zhao Cheng-Li, He Ping-Ni, Ning Jian-Ping, Qin You-Min, Gou Fu-Jun, Bogaerts A.. Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface. Acta Physica Sinica, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
  • Citation:
Metrics
  • Abstract views:  433
  • PDF Downloads:  344
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2014
  • Accepted Date:  23 August 2014
  • Published Online:  05 January 2015

Increase in light extraction efficiency of vertical light emitting diodes by a photo-electro-chemical etching method

  • 1. Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Key Laboratory of Physical Electronics and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
  • 2. Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an 710049, China;
  • 3. Shaanxi Supernova Lighting Technology Co. Ltd, Xi'an 710077, China
Fund Project:  Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), and the Xi'

Abstract: The rate of photo-electro-chemical (PEC) etching on N-polar n-GaN using vertical light emitting diodes (V-LEDs) has been investigated in detail, by varying the etching parameters (etchant concentration, etching duration and light intensity). V-LED with optimal hexagonal pyramid structure (the side-wall angle is 31°) has been fabricated, and then the influence of the PEC etching on the electrical and optical properties of V-LED has been analyzed. After PEC etching, the sample has good ohmic contact with the electrode and has lower contact resistance than a reference sample. The electrical characteristics have a better improvement. And the light output power has improved obviously after PEC etching, which shows 86.1% enhancement at 20 mA. Effect of side-wall angle of the pyramids on light extraction efficiency (LEE) in V-LEDs is theoretically calculated by finite difference time domain (FDTD) method. Simulation results show that the LEE is significantly increased for the sidewall angle between 20° and 40°, and the maximum enhancement is realized at a side-wall angle of 23.6° (the total reflection angle at the GaN/air interface).

Reference (20)

Catalog

    /

    返回文章
    返回