Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-mode narrow linewidth random fiber laser with enhanced feedback from Rayleigh scattering

Li Yang Liu Yan Liu Zhi-Bo Jian Shui-Sheng

Single-mode narrow linewidth random fiber laser with enhanced feedback from Rayleigh scattering

Li Yang, Liu Yan, Liu Zhi-Bo, Jian Shui-Sheng
PDF
Get Citation
  • The origin of Rayleigh scattering in fiber waveguides is numerically demonstrated, which indicates that the inhomogeneous doping and diameter variations during drawing are the two dominant reasons. And the scattering fiber with a loss as high as 0.54 dB/km is successfully fabricated based on such principles. The overall Rayleigh backscattering intensity of 5 km scattering fiber is 5 dB higher than that of SMF-28 with the same length in telecommunication window. The principle of single-mode random fiber laser is also studied. The emission spectrum is the superposition of a large number of random modes with arbitrary amplitudes and phases, among which only the highest gain modes can lasing through gain competition. In experiment, a single-mode erbium-doped fiber linear laser with a narrow linewidth of 3.5 kHz and a high contrast of 50 dB is achieved by combining with 500 m scattering fiber as the random feedback. The threshold pump current is reduced by 80 mA and the max output power is increased by 3 dBm for the proposed laser compared with those of the laser with 500 m SMF-28 as the feedback. The tunabiltiy of the proposed laser is determined mainly by the fiber Bragg grating.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB328206), the Key Program of the National Natural Science Foundation of China (Grant No. 60837002), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013JBM005), and the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0530).
    [1]

    Wang K J, Liu J S, L J T 2006 Acta Phys. Sin. 55 3906 (in Chinese) [王可嘉, 刘劲松, 吕健滔 2006 物理学报 55 3906]

    [2]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 物理学报 62 084207]

    [3]

    Christiano J S M, Leonardo S M, Antônio M B, Martinez M A G, Anderson S L G, Cid B A 2007 Phys. Rev. Lett. 99 153903

    [4]

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202 (in Chinese) [王慧琴, 龚旗煌 2013 物理学报 62 214202]

    [5]

    Hu Z J, Miao B, Wang T X, Fu Q, Zhang D G, Ming H, Zhang Q J 2013 Opt. Lett. 38 4644

    [6]

    Hu Z J, Zhang Q, Miao B, Fu Q, Zou G, Chen Y, Luo Y, Zhang D G, Wang P, Ming H, Zhang Q J 2012 Phys. Rev. Lett. 109 253901

    [7]

    Turitsyn S K, Babin S A, EI-Taher A E, Harper P, Churkin D V, Kavlukov S I, Ania-Castañón J D, Karalekas V, Podivilov E V 2010 Nat. Photon. 4 231

    [8]

    Fotiadi A A 2010 Nat. Photon. 4 204

    [9]

    Churkin D V, EI-Taher A E, Vatnik I D, Ania-Castañón J D, Harper P, Podivilov E V, Babin S A, Turitsyn S K 2012 Opt. Express 20 11178

    [10]

    Smirnov S V, Churkin D V 2013 Opt. Express 21 21236

    [11]

    Zhang W L, Rao Y J, Zhu J M, Yang Z X, Wang Z N, Jia H X 2012 Opt. Express 20 14400

    [12]

    Yin G L, Saxena B, Bao X Y 2011 Opt. Express 19 25981

    [13]

    Zhu T, Bao X Y, Chen L 2011 J. Lightwave Technol. 29 1802

    [14]

    Saxena B, Bao X Y, Chen L 2014 Opt. Lett. 39 1038

    [15]

    Pang M, Bao X Y, Chen L, Qin Z G, Lu Y, Lu P 2013 Opt. Express 21 27155

    [16]

    Pang M, Bao X Y, Chen L 2013 Opt. Lett. 38 1866

    [17]

    Pang M, Xie S R, Bao X Y, Zhou D P, Lu Y G, Chen L 2012 Opt. Lett. 37 3129

    [18]

    Puente N P, Chaikina E I, Herath S, Yamilov A 2011 Appl. Opt. 50 802

    [19]

    Gagné M, Kashyap R 2009 Opt. Express 17 19067

    [20]

    Lizárraga N, Puente N P, Chaikina E I, Leskova T A, Méndez E R 2009 Opt. Express 17 395

    [21]

    Gagné M, Kashyap R 2014 Opt. Lett. 39 2755

    [22]

    Zhu T, Chen F Y, Huang S H, Bao X Y 2013 Laser Phys. Lett. 10 055110

    [23]

    Li Y, Lu P, Bao X Y, Ou Z H 2014 Opt. Lett. 39 2294

  • [1]

    Wang K J, Liu J S, L J T 2006 Acta Phys. Sin. 55 3906 (in Chinese) [王可嘉, 刘劲松, 吕健滔 2006 物理学报 55 3906]

    [2]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 物理学报 62 084207]

    [3]

    Christiano J S M, Leonardo S M, Antônio M B, Martinez M A G, Anderson S L G, Cid B A 2007 Phys. Rev. Lett. 99 153903

    [4]

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202 (in Chinese) [王慧琴, 龚旗煌 2013 物理学报 62 214202]

    [5]

    Hu Z J, Miao B, Wang T X, Fu Q, Zhang D G, Ming H, Zhang Q J 2013 Opt. Lett. 38 4644

    [6]

    Hu Z J, Zhang Q, Miao B, Fu Q, Zou G, Chen Y, Luo Y, Zhang D G, Wang P, Ming H, Zhang Q J 2012 Phys. Rev. Lett. 109 253901

    [7]

    Turitsyn S K, Babin S A, EI-Taher A E, Harper P, Churkin D V, Kavlukov S I, Ania-Castañón J D, Karalekas V, Podivilov E V 2010 Nat. Photon. 4 231

    [8]

    Fotiadi A A 2010 Nat. Photon. 4 204

    [9]

    Churkin D V, EI-Taher A E, Vatnik I D, Ania-Castañón J D, Harper P, Podivilov E V, Babin S A, Turitsyn S K 2012 Opt. Express 20 11178

    [10]

    Smirnov S V, Churkin D V 2013 Opt. Express 21 21236

    [11]

    Zhang W L, Rao Y J, Zhu J M, Yang Z X, Wang Z N, Jia H X 2012 Opt. Express 20 14400

    [12]

    Yin G L, Saxena B, Bao X Y 2011 Opt. Express 19 25981

    [13]

    Zhu T, Bao X Y, Chen L 2011 J. Lightwave Technol. 29 1802

    [14]

    Saxena B, Bao X Y, Chen L 2014 Opt. Lett. 39 1038

    [15]

    Pang M, Bao X Y, Chen L, Qin Z G, Lu Y, Lu P 2013 Opt. Express 21 27155

    [16]

    Pang M, Bao X Y, Chen L 2013 Opt. Lett. 38 1866

    [17]

    Pang M, Xie S R, Bao X Y, Zhou D P, Lu Y G, Chen L 2012 Opt. Lett. 37 3129

    [18]

    Puente N P, Chaikina E I, Herath S, Yamilov A 2011 Appl. Opt. 50 802

    [19]

    Gagné M, Kashyap R 2009 Opt. Express 17 19067

    [20]

    Lizárraga N, Puente N P, Chaikina E I, Leskova T A, Méndez E R 2009 Opt. Express 17 395

    [21]

    Gagné M, Kashyap R 2014 Opt. Lett. 39 2755

    [22]

    Zhu T, Chen F Y, Huang S H, Bao X Y 2013 Laser Phys. Lett. 10 055110

    [23]

    Li Y, Lu P, Bao X Y, Ou Z H 2014 Opt. Lett. 39 2294

  • [1] Wang Ke-Jia, Zhang Qing-Quan, Lü Jian-Tao, Du Ze-Ming, Liu Jin-Song. Dependence of spectral width of TM-polarization lasing modes on pumping intensity in two-dimensional random media. Acta Physica Sinica, 2008, 57(5): 2941-2945. doi: 10.7498/aps.57.2941
    [2] Liu Jin-Song, Ouyang Zheng_Biao, Meng Qing-Sheng, Luo Xian-Da, Wang Hong, Han Yan-Ling. Effect of the strength of randomness on lasing threshold in one-dimensional partially random media. Acta Physica Sinica, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [3] Wang Ke-Jia, Liu Jin-Song, Lü Jian-Tao. Evolution of emmitted light intensity in two-photon pumping random lasers. Acta Physica Sinica, 2007, 56(7): 3906-3910. doi: 10.7498/aps.56.3906
    [4] Liu Jin-Song, Liu Hai, Wang Chun, Lü Jian-Tao, Fan Ting, Wang Xiao-Dong. Threshold and saturation properties of two-dimensional random lasers and mode selection. Acta Physica Sinica, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [5] Liu Jin-Song, Wang Hong. Influence of spatial localization on the threshold of quasi-state cavities in random lasers. Acta Physica Sinica, 2004, 53(12): 4224-4228. doi: 10.7498/aps.53.4224
    [6] Zhu Qi-Hua, Zhang Qing-Quan, Lü Jian-Tao, Wang Ke-Jia, Liu Jin-Song, Yao Jian-Quan. Controllability of random laser output waveshape under femtosecond laser pumping. Acta Physica Sinica, 2011, 60(7): 074203. doi: 10.7498/aps.60.074203
    [7] Liu Jin-Song, Liu Hai, Wang Chun. Spectral time evolution of quasistate modes in two-dimensional random media. Acta Physica Sinica, 2005, 54(7): 3116-3122. doi: 10.7498/aps.54.3116
    [8] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [9] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [10] Xue Li-Fang, Zhang Qiang, Li Fang, Zhou Yan, Liu Yu-Liang. High-frequency modulation, high-power and narrow-linewidth distributed feedback fiber laser. Acta Physica Sinica, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
  • Citation:
Metrics
  • Abstract views:  535
  • PDF Downloads:  348
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2014
  • Accepted Date:  20 October 2014
  • Published Online:  20 April 2015

Single-mode narrow linewidth random fiber laser with enhanced feedback from Rayleigh scattering

  • 1. Key Laboratory of All Optical Network and Advanced Telecommunication Network Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2010CB328206), the Key Program of the National Natural Science Foundation of China (Grant No. 60837002), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013JBM005), and the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0530).

Abstract: The origin of Rayleigh scattering in fiber waveguides is numerically demonstrated, which indicates that the inhomogeneous doping and diameter variations during drawing are the two dominant reasons. And the scattering fiber with a loss as high as 0.54 dB/km is successfully fabricated based on such principles. The overall Rayleigh backscattering intensity of 5 km scattering fiber is 5 dB higher than that of SMF-28 with the same length in telecommunication window. The principle of single-mode random fiber laser is also studied. The emission spectrum is the superposition of a large number of random modes with arbitrary amplitudes and phases, among which only the highest gain modes can lasing through gain competition. In experiment, a single-mode erbium-doped fiber linear laser with a narrow linewidth of 3.5 kHz and a high contrast of 50 dB is achieved by combining with 500 m scattering fiber as the random feedback. The threshold pump current is reduced by 80 mA and the max output power is increased by 3 dBm for the proposed laser compared with those of the laser with 500 m SMF-28 as the feedback. The tunabiltiy of the proposed laser is determined mainly by the fiber Bragg grating.

Reference (23)

Catalog

    /

    返回文章
    返回