Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on damage mitigation for dielectric mirrors by using femtosecond laser micromachining

Lin Yuan-Yuan Jiang You-En Wei Hui Fan Wei Li Xue-Chun

Study on damage mitigation for dielectric mirrors by using femtosecond laser micromachining

Lin Yuan-Yuan, Jiang You-En, Wei Hui, Fan Wei, Li Xue-Chun
PDF
Get Citation
  • Electric field distribution, in the wavelength range 1053 nm and 0° high reflection coatings, with different truncated conical pits has been estimated by using the finite difference time domain method (FDTD). Results of simulations indicate that the smaller the angle between the pit’s edge and the normal line, the higher the damage threshold of the mitigation pit. In the experimental process, the dimension of this angle mainly depends on two factors, i.e. the influencing area of the focal spot and the depth of mitigation pits. Because the ratio between them is the angle’s tangent, decreasing the influencing area of the focal spot and increasing the depth of the machined area could yield a mitigation pit with a smaller angle. By optimizing the focal spot size, pulse energy, step size and the number of machining passes of femtosecond laser micromachining, a pit with an angle of 25° and a depth of 14 μm is obtained. The typical damage threshold of the mitigation pit is about 21 J/cm2, which is 2.3 times greater than the fluence-limited defect. Moreover, the laser damage testing results of 50 mitigation pits show that the mitigation process has a good repeatability. The correlation between the cone angle and the damage threshold is also examined, the simulations are in agreement with the experimental results. The ratio of the maximum intensification between 45° and 25° cone angles is ~2.5 and that of the damage threshold between the two angles is ~0.5. At the same time, the relationship between the micromachining pulse width and the damage threshold is also estimated: if other process parameters are kept constant, a longer pulse length tends to produce lower laser-resistant mitigation pits. Compared to the result of 260 fs laser pulse, the truncated conical pit created by 6 ps laser pulse has a smaller depth, which implies that more thermal effect occurs during the miromachining process. However, cracks are not found around the pit. Thus, thermal damage is not the major reason for the decrease of damage threshold. Meanwhile, smaller depth also indicates that the pit has a large cone angle. According to the result of former FDTD simulation, the decrease of damage threshold is mainly caused by electric field enhancement in a pit with a large cone angle.
    [1]

    Wolfe J E, Qiu S R, Stolz C J 2011 Appl. Opt. 50 9

    [2]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [3]

    Wolfe J, Qiu R, Stolz C, Thomas M, Martinez C, Ozkan A 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p750405

    [4]

    Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 10

    [5]

    Geraghty P, Carr W, Draggoo V, Hackel R, Mailhiot C, Norton M 2007 Proceedings of the 38th SPIE Boulder, Colorado, September 25-27, 2006 p64030Q

    [6]

    Qiu S R, Wolf J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2011 Appl. Opt. 50 9

    [7]

    Chen S L 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences) (in Chinese) [陈顺利 2013 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)]

    [8]

    Qiu S R, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p75040M

    [9]

    Borden M R, Folta J A, Stolz C J, Taylor J R, Wolfe J E, Griffin A J, Thomas M D 2005 Proceedings of the 37th SPIE Boulder, Colorado, September 19-21, 2005 p59912A

    [10]

    Wang C, Wei H, Wang J F, Jiang Y E, Fan W, Li X C 2014 Acta Phys. Sin. 63 224204 (in Chinese) [汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春 2014 物理学报 63 224204]

  • [1]

    Wolfe J E, Qiu S R, Stolz C J 2011 Appl. Opt. 50 9

    [2]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [3]

    Wolfe J, Qiu R, Stolz C, Thomas M, Martinez C, Ozkan A 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p750405

    [4]

    Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 10

    [5]

    Geraghty P, Carr W, Draggoo V, Hackel R, Mailhiot C, Norton M 2007 Proceedings of the 38th SPIE Boulder, Colorado, September 25-27, 2006 p64030Q

    [6]

    Qiu S R, Wolf J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2011 Appl. Opt. 50 9

    [7]

    Chen S L 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences) (in Chinese) [陈顺利 2013 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)]

    [8]

    Qiu S R, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2009 Proceedings of the 41st SPIE Boulder, Colorado, September 21-23, 2009 p75040M

    [9]

    Borden M R, Folta J A, Stolz C J, Taylor J R, Wolfe J E, Griffin A J, Thomas M D 2005 Proceedings of the 37th SPIE Boulder, Colorado, September 19-21, 2005 p59912A

    [10]

    Wang C, Wei H, Wang J F, Jiang Y E, Fan W, Li X C 2014 Acta Phys. Sin. 63 224204 (in Chinese) [汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春 2014 物理学报 63 224204]

  • [1] Li Xi-Bin, Yuan Xiao-Dong, He Shao-Bo, Lü Hai-Bing, Wang Hai-Jun, Xiang Xia, Zheng Wan-Guo. Influence of laser passivation on fused silica damage after CO2 laser mitigation. Acta Physica Sinica, 2012, 61(6): 064401. doi: 10.7498/aps.61.064401
    [2] Zhao Xing-Hai, Gao Yang, Xu Mei-Jian, Duan Wen-Tao, Yu Hai-Wu. Studies on nanosecond laser induced damage to fused fibers. Acta Physica Sinica, 2008, 57(8): 5027-5034. doi: 10.7498/aps.57.5027
    [3] Huang Jin, Jiang Xiao-Dong, Liu Hong-Jie, Lü Hai-Bing, Wang Hai-Jun, Yuan Xiao-Dong, Zheng Wan-Guo. Influence of ultraviolet pulse laser irradiation on fused silica anti-damage ability in high vacuum environment. Acta Physica Sinica, 2010, 59(7): 4677-4681. doi: 10.7498/aps.59.4677
    [4] Wang Wen-Ting, Hu Bing, Wang Ming-Wei. Femtosecond laser fine machining of energetic materials. Acta Physica Sinica, 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [5] Jin Yun-Xia, Shao Jian-Da, Fan Zheng-Xiu, Liu Shi-Jie, Shen Jian, Shen Zi-Cai, Kong Wei-Jin, Wei Chao-Yang. Near-field optical property of multi-layer dielectric gratings for pulse compressor. Acta Physica Sinica, 2006, 55(9): 4588-4594. doi: 10.7498/aps.55.4588
    [6] Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu, Liu Shi-Jie, Ma Jian-Yong, Shen Zi-Cai, Kong Wei-Jin, Shen Jian. Performance of multilayer dielectric grating irradiated by ultrashort optical pulse. Acta Physica Sinica, 2007, 56(8): 4542-4549. doi: 10.7498/aps.56.4542
    [7] Yin Li-Mei, Zhang Wei-Gang, Xue Xiao-Lin, Bai Zhi-Yong, Wei Shi-Lei. Study on characteristics and fluid sensing of unparallel wall fiber micro-cavity Mach-Zehnder interferometer fabricated by femtosecond laser micromachining. Acta Physica Sinica, 2012, 61(17): 170701. doi: 10.7498/aps.61.170701
    [8] Zhang Li-Juan, Zhang Chuan-Chao, Chen Jing, Bai Yang, Jiang Yi-Lan, Jiang Xiao-Long, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Liao Wei. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface. Acta Physica Sinica, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [9] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [10] Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang. Effect of thermal annealing on damage growth of mitigated site on fused silica. Acta Physica Sinica, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
  • Citation:
Metrics
  • Abstract views:  310
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2014
  • Accepted Date:  04 March 2015
  • Published Online:  05 August 2015

Study on damage mitigation for dielectric mirrors by using femtosecond laser micromachining

  • 1. National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Electric field distribution, in the wavelength range 1053 nm and 0° high reflection coatings, with different truncated conical pits has been estimated by using the finite difference time domain method (FDTD). Results of simulations indicate that the smaller the angle between the pit’s edge and the normal line, the higher the damage threshold of the mitigation pit. In the experimental process, the dimension of this angle mainly depends on two factors, i.e. the influencing area of the focal spot and the depth of mitigation pits. Because the ratio between them is the angle’s tangent, decreasing the influencing area of the focal spot and increasing the depth of the machined area could yield a mitigation pit with a smaller angle. By optimizing the focal spot size, pulse energy, step size and the number of machining passes of femtosecond laser micromachining, a pit with an angle of 25° and a depth of 14 μm is obtained. The typical damage threshold of the mitigation pit is about 21 J/cm2, which is 2.3 times greater than the fluence-limited defect. Moreover, the laser damage testing results of 50 mitigation pits show that the mitigation process has a good repeatability. The correlation between the cone angle and the damage threshold is also examined, the simulations are in agreement with the experimental results. The ratio of the maximum intensification between 45° and 25° cone angles is ~2.5 and that of the damage threshold between the two angles is ~0.5. At the same time, the relationship between the micromachining pulse width and the damage threshold is also estimated: if other process parameters are kept constant, a longer pulse length tends to produce lower laser-resistant mitigation pits. Compared to the result of 260 fs laser pulse, the truncated conical pit created by 6 ps laser pulse has a smaller depth, which implies that more thermal effect occurs during the miromachining process. However, cracks are not found around the pit. Thus, thermal damage is not the major reason for the decrease of damage threshold. Meanwhile, smaller depth also indicates that the pit has a large cone angle. According to the result of former FDTD simulation, the decrease of damage threshold is mainly caused by electric field enhancement in a pit with a large cone angle.

Reference (10)

Catalog

    /

    返回文章
    返回