搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离辐射致植物诱变效应的损伤-修复模型

李多芳 曹天光 耿金鹏 展永

引用本文:
Citation:

电离辐射致植物诱变效应的损伤-修复模型

李多芳, 曹天光, 耿金鹏, 展永

Damage-repair model for mutagenic effects of plant induced by ionizing radiation

Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong
PDF
导出引用
  • 在电离辐射速率理论的基础上, 结合电离辐射诱导植物的微观与宏观生物效应, 建立了电离辐射致植物诱变效应的损伤-修复模型. 通过对理论模型平衡态的数值求解, 研究了辐照植物各状态相对浓度随电离辐射剂量的变化. 研究表明当考虑植物的修复作用时, 理论模型能够给出马鞍型的植物存活率-剂量关系. 为进一步验证模型, 对重离子7Li辐射玉米自交系的实验数据进行理论模型拟合, 确定重离子辐射玉米的诱变效应参数, 理论计算的结果与实验数据符合较好. 电离辐射诱导植物的损伤-修复模型的建立为电离辐射诱导植物生物效应的机理研究和辐射诱变植物育种提供了理论依据和参考.
    The plant mutation effects induced by ionizing radiation involve a rather complex process which is composed of physical, chemical, biochemical and biological stages. Nowadays, although ionizing radiation has been widely used in plant mutation breeding, the theoretical explanations for the mechanism of the ionizing radiation caused plant mutation effects are insufficient. Especially, a saddle shape relationship between the plant survival rate and radiation dose is found in the mutagenis effect of ionizing radiation on plants. The underlying mechanism of the saddle shape relationship remains unclear and challenges to all extant models.To explain this relationship, a damage-repair model for the plant mutation effects induced by ionizing radiation is proposed in the present work. Our model is based on the rate theory of ionizing radiation in which the cell damage and repair are taken into account simultaneously together with the micro-and macro-biological mutation effects of plant caused by ionizing radiation. The states of the radiated plant individuals are grouped into three categories: normal, damaged and lethal categories in our model. The evolution dynamics of the relative concentrations of the three categories are determined by a set of coupled equations which are mathematically the same as the Crow-Kimura equations in species evolution theories. With the numerical solution of our model in its steady state, the relative steady state concentration distributions of different categories of the radiated plants with increasing radiation dose are obtained. It is shown that without the plant repair effect, the relationship between the plant survival rate and radiation dose appears to be a conventional shoulder type one. With the plant repair effect, our model gives a saddle shape survival-dose relationship which has been observed commonly in the experiments on the radiated plants by ionizing radiation. To further test the model, the experimental data on the inbred lines of maizes radiated by heavy ion 7Li are used to determine the parameters of the model. It is shown that the theoretical results are basically consistent with the experimental ones. In addition, the mutation characteristic of the survival plants also appears to be a saddle effect-dose relationship, for which the theoretical model could also give a reasonable explanation. Our damage-repair model explains the saddle shape relationship between the plant survival rate and radiation dose, which indeed illuminates its power. And it provides a theoretical basis and reference for studying the biological effect mechanism of plants induced by ionizing radiation and conducting ionizing radiation plant breeding.
      通信作者: 展永, yongz2013@163.com
    • 基金项目: 河北省自然科学基金(批准号: C2013202192)资助的课题.
      Corresponding author: Zhan Yong, yongz2013@163.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. C2013202192).
    [1]

    Muller H J 1928 Proc. Natl. Acad. Sci. U.S.A. 14 714

    [2]

    Tanaka A, Shikazono N, Hase Y 2010 J. Radiat. Res. 51 223

    [3]

    Ma S, Li W J, Zhou L B, Yu L X, Dong X C 2007 J. Nucl. Agric. Sci. 21 4 378 (in Chinese) [马爽, 李文建, 周利斌, 余丽霞, 董喜存 2007 核农学报 4 378]

    [4]

    Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J 2009 J. Nucl. Agric. Sci. 23 1001 (in Chinese) [刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶 2009 核农学报 23 1001]

    [5]

    Tang Z X, Liu Z F, Shao J M, Gong Y X 2005 J. Nucl. Agric. Sci. 19 312 (in Chinese) [唐掌雄, 刘志芳, 邵俊明, 龚胤昕 2005 核农学报 19 312]

    [6]

    Scaldaferro M A, Prina A R, Moscone E A, Kwasniewska J 2013 Appl. Radiat. Isotopes 79 103

    [7]

    Xia S X 1998 Radiobiology (Beijin: Military Medical Science Press) p11 (in Chinese) [夏寿萱 1998 放射生物学(北京: 军事医学科学出版社) p11]

    [8]

    Li P, Li X H, Zhang F, Qiu D L 2008 J. Nucl. Agric. Sci. 22 5 626 (in Chinese) [李鹏, 李新华, 张锋, 邱登林 2008 核农学报 5 626]

    [9]

    Geng J P, Cao T G, Li D F, An H L, Han Y R, Li J, Hu J S, Li N N, Zhan Y 2014 Chin. Phys. Lett. 31 038701

    [10]

    Luo Z M, Gou C J, Wolfram L 2003 Chin. Phys. B 12 080306

    [11]

    Dong X C, Li W J 2012 Adv. Spac. Res. 50 496

    [12]

    Mondello C, Smirnova A, Giulotto E 2010 Mutat. Res. 704 29

    [13]

    Le Cam L 1992 Math. Biosci. 112 261

    [14]

    Yang G L, Swenberg C 1991 Math. Scientist 16 46

    [15]

    Liu Z Q, Gu W B, Li W J 2012 Agr. Sci. Tech. 13 2257

    [16]

    Yang Y N, Liu C L, Wang Y K, Xue J M 2013 Mutat. Res. 751 24

    [17]

    Sato Y, Hirashi T, Hayashi Y, Kasahara M, Fukunishi N, Abe T, Kawano S 2014 Radiat. Chem. Biol. 47 300

    [18]

    Lea D E, Morrison P 1955 Phys. Today 8 14

    [19]

    Chadwick K H, Leenhouts H P 1973 Phys. Med. Biol. 18 78

    [20]

    Kellerer A M, Rossi H H 1978 Radia. Res. 75 471

    [21]

    Esnault M A, Legue F, Chenal C 2010 Environ. Exp. Bot. 68 231

    [22]

    Narendra T, Mohan B S, Mithilesh K M, Prem L B, Renu T 2001 Crit. Rev. Biochem. Mol. 36 4 337

    [23]

    Meyn R E, Withers H R 1980 Radiation Biology in Cancer Research (New York: Raven Press) p195

    [24]

    Curtis S B 1986 Radiat. Res. 106 252

    [25]

    Manabe Y, Nakamura I, Bando M 2014 J. Phys. Soc. Jpn. 83 114003

    [26]

    Manabe Y, Kento I, Bando M 2012 J. Phys. Soc. Jpn. 81 104004

    [27]

    Saakian D B, Hu C K 2004 Phys. Rev. E 69 046121

    [28]

    Dalmau J 2015 Stoch. Proc. Appl. 125 272

    [29]

    Ryuichi O. 2012 Int. J. Cancer 130 991

    [30]

    Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M 2012 J. Radiat. Res. 54 1

    [31]

    Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Löfroth P O, Johansson L, Stigbrand T 2002 Cancer 94 1210

    [32]

    Pathak R, Dey S K, Sarma A, Khudabukhsh A R 2007 Mutat. Res. 632 58

    [33]

    Baake E, Baake M, Wagner H 1997 Phys. Rev. E 7 83 559

    [34]

    Geng J P, Li D F, Cao T G, Wang X Z, Li J, Chen Y F, Han Y R, Hu J S, Li N N, An H L, Zhan Y, Sui L, Kong F Q, Wu Y F 2014 Res. Crop. 15 71

    [35]

    Shao C L, Yu Z L 1997 Nucl. Tech. 20 423 (in Chinese) [邵春林, 余增亮 1997 核技术 20 7 423]

    [36]

    Han R F, Wu Y J, Bian B, Wang R F 2009 Nucl. Phys. Rev. 26 352 (in Chinese) [韩荣飞, 吴跃进, 卞波, 王荣富 2009 原子核物理评论 26 352]

  • [1]

    Muller H J 1928 Proc. Natl. Acad. Sci. U.S.A. 14 714

    [2]

    Tanaka A, Shikazono N, Hase Y 2010 J. Radiat. Res. 51 223

    [3]

    Ma S, Li W J, Zhou L B, Yu L X, Dong X C 2007 J. Nucl. Agric. Sci. 21 4 378 (in Chinese) [马爽, 李文建, 周利斌, 余丽霞, 董喜存 2007 核农学报 4 378]

    [4]

    Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J 2009 J. Nucl. Agric. Sci. 23 1001 (in Chinese) [刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶 2009 核农学报 23 1001]

    [5]

    Tang Z X, Liu Z F, Shao J M, Gong Y X 2005 J. Nucl. Agric. Sci. 19 312 (in Chinese) [唐掌雄, 刘志芳, 邵俊明, 龚胤昕 2005 核农学报 19 312]

    [6]

    Scaldaferro M A, Prina A R, Moscone E A, Kwasniewska J 2013 Appl. Radiat. Isotopes 79 103

    [7]

    Xia S X 1998 Radiobiology (Beijin: Military Medical Science Press) p11 (in Chinese) [夏寿萱 1998 放射生物学(北京: 军事医学科学出版社) p11]

    [8]

    Li P, Li X H, Zhang F, Qiu D L 2008 J. Nucl. Agric. Sci. 22 5 626 (in Chinese) [李鹏, 李新华, 张锋, 邱登林 2008 核农学报 5 626]

    [9]

    Geng J P, Cao T G, Li D F, An H L, Han Y R, Li J, Hu J S, Li N N, Zhan Y 2014 Chin. Phys. Lett. 31 038701

    [10]

    Luo Z M, Gou C J, Wolfram L 2003 Chin. Phys. B 12 080306

    [11]

    Dong X C, Li W J 2012 Adv. Spac. Res. 50 496

    [12]

    Mondello C, Smirnova A, Giulotto E 2010 Mutat. Res. 704 29

    [13]

    Le Cam L 1992 Math. Biosci. 112 261

    [14]

    Yang G L, Swenberg C 1991 Math. Scientist 16 46

    [15]

    Liu Z Q, Gu W B, Li W J 2012 Agr. Sci. Tech. 13 2257

    [16]

    Yang Y N, Liu C L, Wang Y K, Xue J M 2013 Mutat. Res. 751 24

    [17]

    Sato Y, Hirashi T, Hayashi Y, Kasahara M, Fukunishi N, Abe T, Kawano S 2014 Radiat. Chem. Biol. 47 300

    [18]

    Lea D E, Morrison P 1955 Phys. Today 8 14

    [19]

    Chadwick K H, Leenhouts H P 1973 Phys. Med. Biol. 18 78

    [20]

    Kellerer A M, Rossi H H 1978 Radia. Res. 75 471

    [21]

    Esnault M A, Legue F, Chenal C 2010 Environ. Exp. Bot. 68 231

    [22]

    Narendra T, Mohan B S, Mithilesh K M, Prem L B, Renu T 2001 Crit. Rev. Biochem. Mol. 36 4 337

    [23]

    Meyn R E, Withers H R 1980 Radiation Biology in Cancer Research (New York: Raven Press) p195

    [24]

    Curtis S B 1986 Radiat. Res. 106 252

    [25]

    Manabe Y, Nakamura I, Bando M 2014 J. Phys. Soc. Jpn. 83 114003

    [26]

    Manabe Y, Kento I, Bando M 2012 J. Phys. Soc. Jpn. 81 104004

    [27]

    Saakian D B, Hu C K 2004 Phys. Rev. E 69 046121

    [28]

    Dalmau J 2015 Stoch. Proc. Appl. 125 272

    [29]

    Ryuichi O. 2012 Int. J. Cancer 130 991

    [30]

    Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M 2012 J. Radiat. Res. 54 1

    [31]

    Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Löfroth P O, Johansson L, Stigbrand T 2002 Cancer 94 1210

    [32]

    Pathak R, Dey S K, Sarma A, Khudabukhsh A R 2007 Mutat. Res. 632 58

    [33]

    Baake E, Baake M, Wagner H 1997 Phys. Rev. E 7 83 559

    [34]

    Geng J P, Li D F, Cao T G, Wang X Z, Li J, Chen Y F, Han Y R, Hu J S, Li N N, An H L, Zhan Y, Sui L, Kong F Q, Wu Y F 2014 Res. Crop. 15 71

    [35]

    Shao C L, Yu Z L 1997 Nucl. Tech. 20 423 (in Chinese) [邵春林, 余增亮 1997 核技术 20 7 423]

    [36]

    Han R F, Wu Y J, Bian B, Wang R F 2009 Nucl. Phys. Rev. 26 352 (in Chinese) [韩荣飞, 吴跃进, 卞波, 王荣富 2009 原子核物理评论 26 352]

  • [1] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [2] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性. 物理学报, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [3] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [4] 赵金宇, 杨剑群, 董磊, 李兴冀. 氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析. 物理学报, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [5] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [6] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [7] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [8] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [9] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [10] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅. 双极电压比较器电离辐射损伤及剂量率效应分析. 物理学报, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [11] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [12] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究. 物理学报, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [13] 高嵩, 李巍, 尤云祥, 胡天群. 气液混输管线与立管系统严重段塞流数值研究. 物理学报, 2012, 61(10): 104701. doi: 10.7498/aps.61.104701
    [14] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [15] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [16] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [17] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] 陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪. MOS结构电离辐射效应模型研究. 物理学报, 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [19] 房振乾, 胡 明, 张 伟, 张绪瑞. 基于微拉曼光谱技术的氧化介孔硅热导率研究. 物理学报, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [20] 王德真, 马腾才. 重粒子在阴极鞘层中输运的理论模型. 物理学报, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
计量
  • 文章访问数:  5030
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2015-09-02
  • 刊出日期:  2015-12-05

/

返回文章
返回