搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度传递熵的脑肌电信号耦合分析

谢平 杨芳梅 陈晓玲 杜义浩 吴晓光

基于多尺度传递熵的脑肌电信号耦合分析

谢平, 杨芳梅, 陈晓玲, 杜义浩, 吴晓光
PDF
导出引用
导出核心图
  • 神经运动控制中脑肌电同步特征可以反映皮层与肌肉之间的功能联系. 为定量研究脑电和肌电信号在不同时间尺度上的同步耦合特征, 提出多尺度传递熵方法实现静态握力输出下的脑肌电耦合分析: 对同步采集的头皮脑电信号(EEG) 和表面肌电信号(EMG)进行多尺度化, 计算不同尺度因子下EEG与EMG间的传递熵值, 获取不同耦合方向(EEG→EMG及EMG→EEG)上的非线性脑肌电耦合特征; 进一步计算功能频段下的显著性面积指标, 定量分析不同尺度下皮层肌肉功能耦合强度的差异. 分析结果显示, 静态握力输出时beta频段(15–35 Hz)皮层肌肉功能耦合特征显著, 且beta2频段(25–35 Hz)在不同尺度上EEG→EMG方向的耦合强度大于EMG→EEG方向, 耦合强度最大值和方向间耦合强度差异显著值均出现于较高时间尺度. 研究结果揭示: 皮层肌肉功能耦合具有双向性, 且耦合强度在不同时间尺度和不同功能频段上有所差异, 可利用多尺度传递熵定量刻画大脑皮层与肌肉之间的非线性同步特征及功能联系.
      通信作者: 谢平, pingx@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61271142)和河北省自然科学基金(批准号: F2015203372, F2014203246)资助的课题.
    [1]

    Chiang J, Wang Z J, McKeown M J 2012 NeuroImage 63 1498

    [2]

    Conway B A, Halliday D M, Shahani U, Maas P, Weir A I, Rosenberg J R, Farmer S F 1995 J. Physiol. 483 35

    [3]

    Johnson A N, Shinohara M 2012 Eur. J. Appl. Physiol. 112 970

    [4]

    Omlor W, Patino L, Hepp-Reymond M C, Kristeva R 2007 NeuroImage 34 1191

    [5]

    Slobounov S, Ray W, Cao C, Chiang H 2007 Neurosci. Lett. 421 126

    [6]

    Mima T, Ohara S, Nagamine T 2002 Cortical-Muscular Coherence Int. Congr. Ser. (Vol. 1226) (Netherlands: Elsevier) pp109-119

    [7]

    Seth A K 2010 J. Neurosci. Meth. 186 262

    [8]

    Sitnikova E, Dikanev T, Smirnov D, Bezruchko B, Van Luijtelaar G 2008 J. Neurosci. Meth. 170 245

    [9]

    Schelter B, Timmer J, Eichler M 2009 J. Neurosci. Meth. 179 121

    [10]

    Witham C L, Riddle C N, Baker M R, Baker S N 2011 J. Physiol. 589 3789

    [11]

    Schreiber T 2000 Phys. Rev. Lett. 85 461

    [12]

    Wu S, Li J, Zhang M L, Wang J 2013 Acta Phys. Sin. 62 238701 (in Chinese) [吴莎, 李锦, 张明丽, 王俊 2013 物理学报 62 238701]

    [13]

    Costa M, Goldberger A L, Peng C K 2002 Phys. Rev. Lett. 89 068102

    [14]

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704 (in Chinese) [姚文坡, 刘铁兵, 戴加飞, 王俊 2014 物理学报 63 078704]

    [15]

    Yan B G, Zhao T T 2011 Acta Phys. Sin. 60 078701 (in Chinese) [严碧歌, 赵婷婷 2011 物理学报 60 078701]

    [16]

    Costa M, Goldberger A L, Peng C K 2005 Phys. Rev. E 71 021906

    [17]

    Ma P P, Chen Y Y, Du Y H, Su Y P, Wu X G, Liang Z H, Xie P 2014 Journal of Biomedical Engineering 31 971 (in Chinese) [马培培, 陈迎亚, 杜义浩, 苏玉萍, 吴晓光, 梁振虎, 谢平 2014 生物医学工程学杂志 31 971]

    [18]

    Vecchio F, Del Percio C, Marzano N, Fiore A, Toran G, Aschieri P, Gallamini M, Cabras J, Rossini P M, Babiloni, Eusebi F 2008 Behav. Neurosci. 122 917

    [19]

    Laine C M, Negro F, Farina D 2013 J. Neurophysiol. 110 170

    [20]

    Androulidakis A G, Doyle L M, Yarrow K, Litvak V, Gilbertson T P, Brown P 2007 Eur. J. Neurosci. 25 3758

    [21]

    Kristeva R, Patino L, Omlor W 2007 NeuroImage 36 785

    [22]

    Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P 2005 J. Neurosci. 25 7771

    [23]

    Androulidakis A G, Doyle L M, Gilbertson T P, Brown P 2006 Eur. J. Neurosci. 24 3299

    [24]

    Mima T, Matsuoka T, Hallett M 2001 Clin. Neurophy-siol. 112 122

  • [1]

    Chiang J, Wang Z J, McKeown M J 2012 NeuroImage 63 1498

    [2]

    Conway B A, Halliday D M, Shahani U, Maas P, Weir A I, Rosenberg J R, Farmer S F 1995 J. Physiol. 483 35

    [3]

    Johnson A N, Shinohara M 2012 Eur. J. Appl. Physiol. 112 970

    [4]

    Omlor W, Patino L, Hepp-Reymond M C, Kristeva R 2007 NeuroImage 34 1191

    [5]

    Slobounov S, Ray W, Cao C, Chiang H 2007 Neurosci. Lett. 421 126

    [6]

    Mima T, Ohara S, Nagamine T 2002 Cortical-Muscular Coherence Int. Congr. Ser. (Vol. 1226) (Netherlands: Elsevier) pp109-119

    [7]

    Seth A K 2010 J. Neurosci. Meth. 186 262

    [8]

    Sitnikova E, Dikanev T, Smirnov D, Bezruchko B, Van Luijtelaar G 2008 J. Neurosci. Meth. 170 245

    [9]

    Schelter B, Timmer J, Eichler M 2009 J. Neurosci. Meth. 179 121

    [10]

    Witham C L, Riddle C N, Baker M R, Baker S N 2011 J. Physiol. 589 3789

    [11]

    Schreiber T 2000 Phys. Rev. Lett. 85 461

    [12]

    Wu S, Li J, Zhang M L, Wang J 2013 Acta Phys. Sin. 62 238701 (in Chinese) [吴莎, 李锦, 张明丽, 王俊 2013 物理学报 62 238701]

    [13]

    Costa M, Goldberger A L, Peng C K 2002 Phys. Rev. Lett. 89 068102

    [14]

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704 (in Chinese) [姚文坡, 刘铁兵, 戴加飞, 王俊 2014 物理学报 63 078704]

    [15]

    Yan B G, Zhao T T 2011 Acta Phys. Sin. 60 078701 (in Chinese) [严碧歌, 赵婷婷 2011 物理学报 60 078701]

    [16]

    Costa M, Goldberger A L, Peng C K 2005 Phys. Rev. E 71 021906

    [17]

    Ma P P, Chen Y Y, Du Y H, Su Y P, Wu X G, Liang Z H, Xie P 2014 Journal of Biomedical Engineering 31 971 (in Chinese) [马培培, 陈迎亚, 杜义浩, 苏玉萍, 吴晓光, 梁振虎, 谢平 2014 生物医学工程学杂志 31 971]

    [18]

    Vecchio F, Del Percio C, Marzano N, Fiore A, Toran G, Aschieri P, Gallamini M, Cabras J, Rossini P M, Babiloni, Eusebi F 2008 Behav. Neurosci. 122 917

    [19]

    Laine C M, Negro F, Farina D 2013 J. Neurophysiol. 110 170

    [20]

    Androulidakis A G, Doyle L M, Yarrow K, Litvak V, Gilbertson T P, Brown P 2007 Eur. J. Neurosci. 25 3758

    [21]

    Kristeva R, Patino L, Omlor W 2007 NeuroImage 36 785

    [22]

    Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P 2005 J. Neurosci. 25 7771

    [23]

    Androulidakis A G, Doyle L M, Gilbertson T P, Brown P 2006 Eur. J. Neurosci. 24 3299

    [24]

    Mima T, Matsuoka T, Hallett M 2001 Clin. Neurophy-siol. 112 122

  • [1] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究. 物理学报, 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [2] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究. 物理学报, 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [3] 陈月辉, 孟庆芳, 周卫东, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法. 物理学报, 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [4] 杜义浩, 齐文靖, 邹策, 张晋铭, 谢博多, 谢平. 基于变分模态分解-相干分析的肌间耦合特性. 物理学报, 2017, 66(6): 068701. doi: 10.7498/aps.66.068701
    [5] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析. 物理学报, 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [6] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [7] 雷敏, 孟光, 张文明, Nilanjan Sarkar. 基于虚拟开车环境的自闭症儿童脑电样本熵. 物理学报, 2016, 65(10): 108701. doi: 10.7498/aps.65.108701
    [8] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [9] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析. 物理学报, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [10] 吴莎, 李锦, 张明丽, 王俊. 基于改进的符号转移熵的心脑电信号耦合研究. 物理学报, 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [11] 杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁. 静息态脑电信号动态功能连接分析. 物理学报, 2015, 64(5): 058701. doi: 10.7498/aps.64.058701
    [12] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析. 物理学报, 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [13] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析. 物理学报, 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [14] 张涛, 陈万忠, 李明阳. 基于AdaBoost算法的癫痫脑电信号识别. 物理学报, 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [15] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [16] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析. 物理学报, 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [17] 卞春华, 马千里, 王俊. 脑电信号的标度分析及其在睡眠状态区分中的应用. 物理学报, 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [18] 边洪瑞, 王江, 邓斌, 魏熙乐, 韩春晓, 车艳秋. 基于复杂度的针刺脑电信号特征提取. 物理学报, 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [19] 杨小牛, 李建东, 唐智灵. 调制无线电信号的分形特征研究. 物理学报, 2011, 60(5): 056401. doi: 10.7498/aps.60.056401
    [20] 侯凤贞, 戴加飞, 刘新峰, 黄晓林. 基于网络连接度指标的脑梗死患者脑电信号相同步分析. 物理学报, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
  • 引用本文:
    Citation:
计量
  • 文章访问数:  640
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-12-20

基于多尺度传递熵的脑肌电信号耦合分析

  • 1. 燕山大学电气工程学院, 河北省测试计量技术及仪器重点实验室, 秦皇岛 066004
  • 通信作者: 谢平, pingx@ysu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61271142)和河北省自然科学基金(批准号: F2015203372, F2014203246)资助的课题.

摘要: 神经运动控制中脑肌电同步特征可以反映皮层与肌肉之间的功能联系. 为定量研究脑电和肌电信号在不同时间尺度上的同步耦合特征, 提出多尺度传递熵方法实现静态握力输出下的脑肌电耦合分析: 对同步采集的头皮脑电信号(EEG) 和表面肌电信号(EMG)进行多尺度化, 计算不同尺度因子下EEG与EMG间的传递熵值, 获取不同耦合方向(EEG→EMG及EMG→EEG)上的非线性脑肌电耦合特征; 进一步计算功能频段下的显著性面积指标, 定量分析不同尺度下皮层肌肉功能耦合强度的差异. 分析结果显示, 静态握力输出时beta频段(15–35 Hz)皮层肌肉功能耦合特征显著, 且beta2频段(25–35 Hz)在不同尺度上EEG→EMG方向的耦合强度大于EMG→EEG方向, 耦合强度最大值和方向间耦合强度差异显著值均出现于较高时间尺度. 研究结果揭示: 皮层肌肉功能耦合具有双向性, 且耦合强度在不同时间尺度和不同功能频段上有所差异, 可利用多尺度传递熵定量刻画大脑皮层与肌肉之间的非线性同步特征及功能联系.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回