搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火对熔石英表面损伤修复点损伤增长的影响

蒋勇 袁晓东 王海军 廖威 刘春明 向霞 邱荣 周强 高翔 杨永佳 郑万国 祖小涛 苗心向

引用本文:
Citation:

退火对熔石英表面损伤修复点损伤增长的影响

蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向

Effect of thermal annealing on damage growth of mitigated site on fused silica

Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang
PDF
导出引用
  • 研究不同参数退火处理的熔石英表面损伤修复点再次损伤及损伤增长时的形貌和损伤增长率的差异, 同时与未退火的基底及修复点的损伤增长行为对比. 结果表明: 未退火的修复点再次损伤后, 损伤点周围的裂纹会在应力的作用下继续扩展, 导致更加严重、尺寸更大的损伤点; 当退火处理将修复点周围应力导致的光程差控制在25 nm左右时, 虽损伤增长速率较快, 但可有效抑制裂纹扩展. 同时研究结果也表明只要退火过程能将修复点周围应力导致的光程差控制在10 nm以下, 其损伤增长率与基底的损伤增长率没有明显差异, 从而可以有效控制修复点的损伤增长速率. 研究结果可为分析应力对修复点损伤增长的影响、指导退火参数的优化提供参考.
    Residual stresses will be formed around the mitigated site after the damaged site is irradiated by 10.6 m CO2 laser. Using those mitigated sites can improve the damage resistance ability in optics, and once the reinitiating damage occurs, the damaged site will grow under the subsequence irradiation and large fracture may form around the mitigated site. In this study, the annealing temperatures 650, 750 and 850 ℃, and time durations 6, 8, 10 and 12 h are used to anneal the samples. The sample annealed at 750 ℃ is the main research object of this study, while the sample annealed at 650 ℃ or 850 ℃ is only treated for 10 h. The differences of damage growth morphology and velocity of mitigated site on fused silica treated under those annealing conditions are investigated when it is damaged once again. Results are also compared with the damage growth behaviors of the unannealed substrate and mitigated site. It is indicated that the damage growth data still fit to an exponential curve even for the unannealed mitigated site. However, for the unannealed mitigated site, a more serious and larger size of damage site will be formed when the reinitiating damage occurs. It is mainly attributed to the fast propagation of crack under the effect of residual stress around the mitigated site. This behavior can be effectively controlled by the annealing treatment. Results show that the crack propagation behavior can be avoided when the retardation of mitigated sites is controlled in the range of 25 nm; moreover, the damage growth velocity and coefficient will gradually decrease with the increase of the annealing duration and annealing temperatures. A notable result indicates that there is no difference between the mitigated site and substrate when the retardation of mitigated sites is controlled below 10 nm, especially for the samples treated at 750 ℃ for 12 h and 850 ℃ for 10 h. Moreover, the reported investigation indicates that the stresses can still improve the damage resistance ability in optics. This is the most desirable outcome of the annealing treatment. Thus, the investigation results can provide a reference on how to analyze the effect of stress on damage growth of mitigated site and optimize the annealing parameters.
      通信作者: 苗心向, miaoxinxiang.714@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61505170, 61505171)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1530109)和西南科技大学自然科学基金(批准号: 13zx7120)资助的课题.
      Corresponding author: Miao Xin-Xiang, miaoxinxiang.714@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61505170, 61505171), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530109), and the National Natural Science Foundation of Southwest University of Science and Technology, China (Grant No. 13zx7120).
    [1]

    Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G 2015 Chin. Phys. B 24 024220

    [2]

    Catrin R, Neauport J, Taroux D, Cormont P, Maunier C, Lambert S 2014 Opt. Eng. 53 092010

    [3]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit Ml D, Laurence T A, Norton M A, Carr C W 2011 J. Am. Ceram. Soc. 94 416

    [4]

    Lamaignre L, Dupuy G, Bourgeade A, Benoist A, Roques A, Courchinoux R 2014 Appl. Phys. B 114 517

    [5]

    Ma B, Ma H P, Jiao H F, Cheng X B, Wang Z S 2014 Opt. Laser Technol. 57 136

    [6]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G 2012 Chin. Phys. B 21 064219

    [7]

    Jiang Y, He S B, Yuan X D, Wang H J, Liao W, L H B, Liu C M, Xiang X, Qiu R, Yang Y J 2014 Acta Phys. Sin. 63 068105 (in Chinese) [蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳 2014 物理学报 63 068105]

    [8]

    Elhadj S, Matthews M J, Guss G M, Bass I L 2013 Appl. Phys. B 113 307

    [9]

    Matthews M J, Yang S T, Shen N, Elhadj S, Raman R N, Guss G, Bass I L, Nostrand M C, Wegner P J 2015 Adv. Eng. Mater. 17 247

    [10]

    Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G 2012 Chin. Phys. B 21 054216

    [11]

    Jiang Y, Xiang X, Liu C M, Wang H J, Liao W, L H B, Yuan X D, Qiu R, Yang Y J, Zheng W G 2015 J. Non-Cryst. Solids 410 88

    [12]

    Gallais L, Cormont P, Rullier J L 2009 Opt. Express 17 23488

    [13]

    Jiang Y, Xiang X, Yuan X D, Liu C M, Wang H J, Luo C S, He S B, L H B, Zheng W G, Zu X T 2013 Laser Phys. 23 026001

    [14]

    Jiang Y, Qiu R, Yang Y J, Liao W, Wang H J, Yuan X D, Liu C M, Xiang X, Zu X T 2014 J. Optoelectron. Laser 7 1326 (in Chinese) [蒋勇, 邱荣, 杨永佳, 廖威, 王海军, 袁晓东, 刘春明, 向霞, 祖小涛 2014 光电子激光 7 1326]

    [15]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2006 Proc. SPIE 6403 64030M

    [16]

    During A, Bouchut P, Coutard J G, Leymarie C, Bercegol H 2006 Proc. SPIE 6403 640323

    [17]

    Jiang Y, Xiang X, Liu C M, Yuan X D, Yang L, Yan Z H, Wang H J, Liao W, L H B, Zheng W G 2012 Chin. J. Lasers 39 61 (in Chinese) [蒋勇, 向霞, 刘春明, 袁晓东, 杨亮, 晏中华, 王海军, 廖威, 吕海兵, 郑万国 2012 中国激光 39 61]

    [18]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D 2014 Opt. Express 22 5839

    [19]

    Baxamusa S, Miller P E, Wong L, Steele R, Shen N, Bude J 2014 Opt. Express 22 29568

    [20]

    Raman R N, Negres R A, Matthews M J, Carr C W 2013 Opt. Mater. Express 3 765

    [21]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308 (in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [22]

    Xu S Z, Zu X T, Yuan X D 2011 Chin. Opt. Lett. 9 061405

    [23]

    Negres R A, Norton M A, Cross D A, Carr C W 2010 Opt. Express 18 19966

    [24]

    Feit M D, Matthews M J, Soules T F, Stolken J S, Vignes R M, Yang S T, Cooke J D 2010 Proc. SPIE 7842 78420O

    [25]

    Cormont P, Gallais L, Lamaignre L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 26068

  • [1]

    Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G 2015 Chin. Phys. B 24 024220

    [2]

    Catrin R, Neauport J, Taroux D, Cormont P, Maunier C, Lambert S 2014 Opt. Eng. 53 092010

    [3]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit Ml D, Laurence T A, Norton M A, Carr C W 2011 J. Am. Ceram. Soc. 94 416

    [4]

    Lamaignre L, Dupuy G, Bourgeade A, Benoist A, Roques A, Courchinoux R 2014 Appl. Phys. B 114 517

    [5]

    Ma B, Ma H P, Jiao H F, Cheng X B, Wang Z S 2014 Opt. Laser Technol. 57 136

    [6]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G 2012 Chin. Phys. B 21 064219

    [7]

    Jiang Y, He S B, Yuan X D, Wang H J, Liao W, L H B, Liu C M, Xiang X, Qiu R, Yang Y J 2014 Acta Phys. Sin. 63 068105 (in Chinese) [蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳 2014 物理学报 63 068105]

    [8]

    Elhadj S, Matthews M J, Guss G M, Bass I L 2013 Appl. Phys. B 113 307

    [9]

    Matthews M J, Yang S T, Shen N, Elhadj S, Raman R N, Guss G, Bass I L, Nostrand M C, Wegner P J 2015 Adv. Eng. Mater. 17 247

    [10]

    Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G 2012 Chin. Phys. B 21 054216

    [11]

    Jiang Y, Xiang X, Liu C M, Wang H J, Liao W, L H B, Yuan X D, Qiu R, Yang Y J, Zheng W G 2015 J. Non-Cryst. Solids 410 88

    [12]

    Gallais L, Cormont P, Rullier J L 2009 Opt. Express 17 23488

    [13]

    Jiang Y, Xiang X, Yuan X D, Liu C M, Wang H J, Luo C S, He S B, L H B, Zheng W G, Zu X T 2013 Laser Phys. 23 026001

    [14]

    Jiang Y, Qiu R, Yang Y J, Liao W, Wang H J, Yuan X D, Liu C M, Xiang X, Zu X T 2014 J. Optoelectron. Laser 7 1326 (in Chinese) [蒋勇, 邱荣, 杨永佳, 廖威, 王海军, 袁晓东, 刘春明, 向霞, 祖小涛 2014 光电子激光 7 1326]

    [15]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2006 Proc. SPIE 6403 64030M

    [16]

    During A, Bouchut P, Coutard J G, Leymarie C, Bercegol H 2006 Proc. SPIE 6403 640323

    [17]

    Jiang Y, Xiang X, Liu C M, Yuan X D, Yang L, Yan Z H, Wang H J, Liao W, L H B, Zheng W G 2012 Chin. J. Lasers 39 61 (in Chinese) [蒋勇, 向霞, 刘春明, 袁晓东, 杨亮, 晏中华, 王海军, 廖威, 吕海兵, 郑万国 2012 中国激光 39 61]

    [18]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D 2014 Opt. Express 22 5839

    [19]

    Baxamusa S, Miller P E, Wong L, Steele R, Shen N, Bude J 2014 Opt. Express 22 29568

    [20]

    Raman R N, Negres R A, Matthews M J, Carr C W 2013 Opt. Mater. Express 3 765

    [21]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308 (in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [22]

    Xu S Z, Zu X T, Yuan X D 2011 Chin. Opt. Lett. 9 061405

    [23]

    Negres R A, Norton M A, Cross D A, Carr C W 2010 Opt. Express 18 19966

    [24]

    Feit M D, Matthews M J, Soules T F, Stolken J S, Vignes R M, Yang S T, Cooke J D 2010 Proc. SPIE 7842 78420O

    [25]

    Cormont P, Gallais L, Lamaignre L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 26068

计量
  • 文章访问数:  2005
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-13
  • 修回日期:  2015-11-03
  • 刊出日期:  2016-02-05

退火对熔石英表面损伤修复点损伤增长的影响

  • 1. 西南科技大学-中国工程物理研究院激光聚变研究中心极端条件物质特性联合实验室, 绵阳 621010;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900;
  • 3. 电子科技大学物理电子学院, 成都 610054
  • 通信作者: 苗心向, miaoxinxiang.714@163.com
    基金项目: 

    国家自然科学基金青年科学基金(批准号: 61505170, 61505171)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1530109)和西南科技大学自然科学基金(批准号: 13zx7120)资助的课题.

摘要: 研究不同参数退火处理的熔石英表面损伤修复点再次损伤及损伤增长时的形貌和损伤增长率的差异, 同时与未退火的基底及修复点的损伤增长行为对比. 结果表明: 未退火的修复点再次损伤后, 损伤点周围的裂纹会在应力的作用下继续扩展, 导致更加严重、尺寸更大的损伤点; 当退火处理将修复点周围应力导致的光程差控制在25 nm左右时, 虽损伤增长速率较快, 但可有效抑制裂纹扩展. 同时研究结果也表明只要退火过程能将修复点周围应力导致的光程差控制在10 nm以下, 其损伤增长率与基底的损伤增长率没有明显差异, 从而可以有效控制修复点的损伤增长速率. 研究结果可为分析应力对修复点损伤增长的影响、指导退火参数的优化提供参考.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回