Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of thermal annealing on damage growth of mitigated site on fused silica

Jiang Yong Yuan Xiao-Dong Wang Hai-Jun Liao Wei Liu Chun-Ming Xiang Xia Qiu Rong Zhou Qiang Gao Xiang Yang Yong-Jia Zheng Wan-Guo Zu Xiao-Tao Miao Xin-Xiang

Effect of thermal annealing on damage growth of mitigated site on fused silica

Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Residual stresses will be formed around the mitigated site after the damaged site is irradiated by 10.6 m CO2 laser. Using those mitigated sites can improve the damage resistance ability in optics, and once the reinitiating damage occurs, the damaged site will grow under the subsequence irradiation and large fracture may form around the mitigated site. In this study, the annealing temperatures 650, 750 and 850 ℃, and time durations 6, 8, 10 and 12 h are used to anneal the samples. The sample annealed at 750 ℃ is the main research object of this study, while the sample annealed at 650 ℃ or 850 ℃ is only treated for 10 h. The differences of damage growth morphology and velocity of mitigated site on fused silica treated under those annealing conditions are investigated when it is damaged once again. Results are also compared with the damage growth behaviors of the unannealed substrate and mitigated site. It is indicated that the damage growth data still fit to an exponential curve even for the unannealed mitigated site. However, for the unannealed mitigated site, a more serious and larger size of damage site will be formed when the reinitiating damage occurs. It is mainly attributed to the fast propagation of crack under the effect of residual stress around the mitigated site. This behavior can be effectively controlled by the annealing treatment. Results show that the crack propagation behavior can be avoided when the retardation of mitigated sites is controlled in the range of 25 nm; moreover, the damage growth velocity and coefficient will gradually decrease with the increase of the annealing duration and annealing temperatures. A notable result indicates that there is no difference between the mitigated site and substrate when the retardation of mitigated sites is controlled below 10 nm, especially for the samples treated at 750 ℃ for 12 h and 850 ℃ for 10 h. Moreover, the reported investigation indicates that the stresses can still improve the damage resistance ability in optics. This is the most desirable outcome of the annealing treatment. Thus, the investigation results can provide a reference on how to analyze the effect of stress on damage growth of mitigated site and optimize the annealing parameters.
      Corresponding author: Miao Xin-Xiang, miaoxinxiang.714@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61505170, 61505171), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530109), and the National Natural Science Foundation of Southwest University of Science and Technology, China (Grant No. 13zx7120).
    [1]

    Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G 2015 Chin. Phys. B 24 024220

    [2]

    Catrin R, Neauport J, Taroux D, Cormont P, Maunier C, Lambert S 2014 Opt. Eng. 53 092010

    [3]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit Ml D, Laurence T A, Norton M A, Carr C W 2011 J. Am. Ceram. Soc. 94 416

    [4]

    Lamaignre L, Dupuy G, Bourgeade A, Benoist A, Roques A, Courchinoux R 2014 Appl. Phys. B 114 517

    [5]

    Ma B, Ma H P, Jiao H F, Cheng X B, Wang Z S 2014 Opt. Laser Technol. 57 136

    [6]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G 2012 Chin. Phys. B 21 064219

    [7]

    Jiang Y, He S B, Yuan X D, Wang H J, Liao W, L H B, Liu C M, Xiang X, Qiu R, Yang Y J 2014 Acta Phys. Sin. 63 068105 (in Chinese) [蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳 2014 物理学报 63 068105]

    [8]

    Elhadj S, Matthews M J, Guss G M, Bass I L 2013 Appl. Phys. B 113 307

    [9]

    Matthews M J, Yang S T, Shen N, Elhadj S, Raman R N, Guss G, Bass I L, Nostrand M C, Wegner P J 2015 Adv. Eng. Mater. 17 247

    [10]

    Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G 2012 Chin. Phys. B 21 054216

    [11]

    Jiang Y, Xiang X, Liu C M, Wang H J, Liao W, L H B, Yuan X D, Qiu R, Yang Y J, Zheng W G 2015 J. Non-Cryst. Solids 410 88

    [12]

    Gallais L, Cormont P, Rullier J L 2009 Opt. Express 17 23488

    [13]

    Jiang Y, Xiang X, Yuan X D, Liu C M, Wang H J, Luo C S, He S B, L H B, Zheng W G, Zu X T 2013 Laser Phys. 23 026001

    [14]

    Jiang Y, Qiu R, Yang Y J, Liao W, Wang H J, Yuan X D, Liu C M, Xiang X, Zu X T 2014 J. Optoelectron. Laser 7 1326 (in Chinese) [蒋勇, 邱荣, 杨永佳, 廖威, 王海军, 袁晓东, 刘春明, 向霞, 祖小涛 2014 光电子激光 7 1326]

    [15]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2006 Proc. SPIE 6403 64030M

    [16]

    During A, Bouchut P, Coutard J G, Leymarie C, Bercegol H 2006 Proc. SPIE 6403 640323

    [17]

    Jiang Y, Xiang X, Liu C M, Yuan X D, Yang L, Yan Z H, Wang H J, Liao W, L H B, Zheng W G 2012 Chin. J. Lasers 39 61 (in Chinese) [蒋勇, 向霞, 刘春明, 袁晓东, 杨亮, 晏中华, 王海军, 廖威, 吕海兵, 郑万国 2012 中国激光 39 61]

    [18]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D 2014 Opt. Express 22 5839

    [19]

    Baxamusa S, Miller P E, Wong L, Steele R, Shen N, Bude J 2014 Opt. Express 22 29568

    [20]

    Raman R N, Negres R A, Matthews M J, Carr C W 2013 Opt. Mater. Express 3 765

    [21]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308 (in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [22]

    Xu S Z, Zu X T, Yuan X D 2011 Chin. Opt. Lett. 9 061405

    [23]

    Negres R A, Norton M A, Cross D A, Carr C W 2010 Opt. Express 18 19966

    [24]

    Feit M D, Matthews M J, Soules T F, Stolken J S, Vignes R M, Yang S T, Cooke J D 2010 Proc. SPIE 7842 78420O

    [25]

    Cormont P, Gallais L, Lamaignre L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 26068

  • [1]

    Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G 2015 Chin. Phys. B 24 024220

    [2]

    Catrin R, Neauport J, Taroux D, Cormont P, Maunier C, Lambert S 2014 Opt. Eng. 53 092010

    [3]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit Ml D, Laurence T A, Norton M A, Carr C W 2011 J. Am. Ceram. Soc. 94 416

    [4]

    Lamaignre L, Dupuy G, Bourgeade A, Benoist A, Roques A, Courchinoux R 2014 Appl. Phys. B 114 517

    [5]

    Ma B, Ma H P, Jiao H F, Cheng X B, Wang Z S 2014 Opt. Laser Technol. 57 136

    [6]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G 2012 Chin. Phys. B 21 064219

    [7]

    Jiang Y, He S B, Yuan X D, Wang H J, Liao W, L H B, Liu C M, Xiang X, Qiu R, Yang Y J 2014 Acta Phys. Sin. 63 068105 (in Chinese) [蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳 2014 物理学报 63 068105]

    [8]

    Elhadj S, Matthews M J, Guss G M, Bass I L 2013 Appl. Phys. B 113 307

    [9]

    Matthews M J, Yang S T, Shen N, Elhadj S, Raman R N, Guss G, Bass I L, Nostrand M C, Wegner P J 2015 Adv. Eng. Mater. 17 247

    [10]

    Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G 2012 Chin. Phys. B 21 054216

    [11]

    Jiang Y, Xiang X, Liu C M, Wang H J, Liao W, L H B, Yuan X D, Qiu R, Yang Y J, Zheng W G 2015 J. Non-Cryst. Solids 410 88

    [12]

    Gallais L, Cormont P, Rullier J L 2009 Opt. Express 17 23488

    [13]

    Jiang Y, Xiang X, Yuan X D, Liu C M, Wang H J, Luo C S, He S B, L H B, Zheng W G, Zu X T 2013 Laser Phys. 23 026001

    [14]

    Jiang Y, Qiu R, Yang Y J, Liao W, Wang H J, Yuan X D, Liu C M, Xiang X, Zu X T 2014 J. Optoelectron. Laser 7 1326 (in Chinese) [蒋勇, 邱荣, 杨永佳, 廖威, 王海军, 袁晓东, 刘春明, 向霞, 祖小涛 2014 光电子激光 7 1326]

    [15]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2006 Proc. SPIE 6403 64030M

    [16]

    During A, Bouchut P, Coutard J G, Leymarie C, Bercegol H 2006 Proc. SPIE 6403 640323

    [17]

    Jiang Y, Xiang X, Liu C M, Yuan X D, Yang L, Yan Z H, Wang H J, Liao W, L H B, Zheng W G 2012 Chin. J. Lasers 39 61 (in Chinese) [蒋勇, 向霞, 刘春明, 袁晓东, 杨亮, 晏中华, 王海军, 廖威, 吕海兵, 郑万国 2012 中国激光 39 61]

    [18]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D 2014 Opt. Express 22 5839

    [19]

    Baxamusa S, Miller P E, Wong L, Steele R, Shen N, Bude J 2014 Opt. Express 22 29568

    [20]

    Raman R N, Negres R A, Matthews M J, Carr C W 2013 Opt. Mater. Express 3 765

    [21]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308 (in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [22]

    Xu S Z, Zu X T, Yuan X D 2011 Chin. Opt. Lett. 9 061405

    [23]

    Negres R A, Norton M A, Cross D A, Carr C W 2010 Opt. Express 18 19966

    [24]

    Feit M D, Matthews M J, Soules T F, Stolken J S, Vignes R M, Yang S T, Cooke J D 2010 Proc. SPIE 7842 78420O

    [25]

    Cormont P, Gallais L, Lamaignre L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 26068

  • [1] Han Wei, Feng Bin, Zheng Kui-Xing, Zhu Qi-Hua, Zheng Wan-Guo, Gong Ma-Li. Laser-induced damage growth of fused silica at 351 nm on a large-aperture high-power laser facility. Acta Physica Sinica, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [2] Zhang Chun-Lai, Liu Chun-Ming, Xiang Xia, Dai Wei, Wang Zhi-Guo, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Near-field modulated simulation of repaired site contained crack or bubble in fused silica subsurface. Acta Physica Sinica, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [3] Li Xi-Bin, Yuan Xiao-Dong, He Shao-Bo, Lü Hai-Bing, Wang Hai-Jun, Xiang Xia, Zheng Wan-Guo. Influence of laser passivation on fused silica damage after CO2 laser mitigation. Acta Physica Sinica, 2012, 61(6): 064401. doi: 10.7498/aps.61.064401
    [4] Liu Hong-Jie, Huang Jin, Wang Feng-Rui, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong. Effect of thermal stresses on fused silica surface on the laser induced damage. Acta Physica Sinica, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [5] Wang Feng-Rui, Huang Jin, Liu Hong-Jie, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution. Acta Physica Sinica, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [6] Liu Hong-Jie, Zhou Xin-Da, Huang Jin, Wang Feng-Rui, Jiang Xiao-Dong, Huang Jing, Wu Wei-Dong, Zheng Wan-Guo. Comparison of damage between front and rear surfaces under nanosecond 355nm laser irradiation on fused silica. Acta Physica Sinica, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [7] Bai Yang, Zhang Li-Juan, Liao Wei, Zhou Hai, Zhang Chuan-Chao, Chen Jing, Ye Ya-Yun, Jiang Yi-Lan, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Zheng Wan-Guo. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements. Acta Physica Sinica, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [8] Zhang Li-Juan, Zhang Chuan-Chao, Chen Jing, Bai Yang, Jiang Yi-Lan, Jiang Xiao-Long, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Liao Wei. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface. Acta Physica Sinica, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [9] Liu Chun-Ming, Yang Liang, Yan Zhong-Hua, Jiang Yong, Wang Hai-Jun, Liao Wei, Xiang Xia, He Shao-Bo, Lü Hai-Bin, Yuan Xiao-Dong, Zheng Wan-Guo, Zu Xiao-Tao. The influence of CO2 laser local irradiation on the laser damage resistance of fused silica. Acta Physica Sinica, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [10] Xu Jun, Xiao Xiao-Chun, Pan Yi-Shan, Ding Xin. Granular coal crack propagation study under uniaxial compression based on J integral. Acta Physica Sinica, 2014, 63(21): 214602. doi: 10.7498/aps.63.214602
    [11] Cai Yue-Fei, Lü Zhi-Wei, Li Sen-Sen, Wang Yu-Lei, Zhu Cheng-Yu, Lin Dian-Yang, He Wei-Ming. Systematic studies on the field enhancement effect of Hertzian microcracks. Acta Physica Sinica, 2013, 62(23): 234203. doi: 10.7498/aps.62.234203
    [12] Zhang Shu-Ling, Sun Jian-Fei, Xing Da-Wei. Influence of field annealing on giant magneto-impedance effect of Co-based melt extraction amorphous wires. Acta Physica Sinica, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [13] Li Rong-Bin, Yu Zhong-Hai. Computer simulation of damage in diamond due to boron-nitrogen co-doping and its annealing. Acta Physica Sinica, 2007, 56(6): 3360-3365. doi: 10.7498/aps.56.3360
    [14] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [15] Wang Sha, Chen Jun, Tong Li-Xin, Gao Qing-Song, Liu Chong, Tang Chun. Experimental and theoretical investigation of fused silica rod-fiber phase conjugator. Acta Physica Sinica, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [16] Zhang Chun-Lai, Wang Zhi-Guo, Xiang Xia, Liu Chun-Ming, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Simulation of field intensification induced by pit-shaped crack on fused silica rear-surface. Acta Physica Sinica, 2012, 61(11): 114210. doi: 10.7498/aps.61.114210
    [17] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [18] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [19] Shen Chao, Cheng Xiang-Ai, Tian Ye, Xu Zhong-Jie, Jiang Tian. Experimental and computational study of damage pocess induced by 1064 nm nanosecond laser pulse on the exit surface of fused silica. Acta Physica Sinica, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [20] Su Rui, Zhang Hong, Jiang Sheng-Li, Chen Jun, Han Wei. Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen vacancy defects in amorphous silica. Acta Physica Sinica, 2016, 65(2): 027801. doi: 10.7498/aps.65.027801
  • Citation:
Metrics
  • Abstract views:  1202
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2015
  • Accepted Date:  03 November 2015
  • Published Online:  05 February 2016

Effect of thermal annealing on damage growth of mitigated site on fused silica

    Corresponding author: Miao Xin-Xiang, miaoxinxiang.714@163.com
  • 1. Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010, China;
  • 2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
  • 3. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61505170, 61505171), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530109), and the National Natural Science Foundation of Southwest University of Science and Technology, China (Grant No. 13zx7120).

Abstract: Residual stresses will be formed around the mitigated site after the damaged site is irradiated by 10.6 m CO2 laser. Using those mitigated sites can improve the damage resistance ability in optics, and once the reinitiating damage occurs, the damaged site will grow under the subsequence irradiation and large fracture may form around the mitigated site. In this study, the annealing temperatures 650, 750 and 850 ℃, and time durations 6, 8, 10 and 12 h are used to anneal the samples. The sample annealed at 750 ℃ is the main research object of this study, while the sample annealed at 650 ℃ or 850 ℃ is only treated for 10 h. The differences of damage growth morphology and velocity of mitigated site on fused silica treated under those annealing conditions are investigated when it is damaged once again. Results are also compared with the damage growth behaviors of the unannealed substrate and mitigated site. It is indicated that the damage growth data still fit to an exponential curve even for the unannealed mitigated site. However, for the unannealed mitigated site, a more serious and larger size of damage site will be formed when the reinitiating damage occurs. It is mainly attributed to the fast propagation of crack under the effect of residual stress around the mitigated site. This behavior can be effectively controlled by the annealing treatment. Results show that the crack propagation behavior can be avoided when the retardation of mitigated sites is controlled in the range of 25 nm; moreover, the damage growth velocity and coefficient will gradually decrease with the increase of the annealing duration and annealing temperatures. A notable result indicates that there is no difference between the mitigated site and substrate when the retardation of mitigated sites is controlled below 10 nm, especially for the samples treated at 750 ℃ for 12 h and 850 ℃ for 10 h. Moreover, the reported investigation indicates that the stresses can still improve the damage resistance ability in optics. This is the most desirable outcome of the annealing treatment. Thus, the investigation results can provide a reference on how to analyze the effect of stress on damage growth of mitigated site and optimize the annealing parameters.

Reference (25)

Catalog

    /

    返回文章
    返回