x

## 留言板

Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance

## Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance

Zhang Ke-Han, Yan Long-Bin, Yan Zheng-Chao, Wen Hai-Bing, Song Bao-Wei
PDF

• #### Abstract

In this paper, we investigate the transmission mechanism and eddy-current loss of the contact-less power transmission (CPT) system in seawater environment. Contact-less power transfer could be achieved in the three following ways: magnetic coupling, magnetic resonance coupling, and microwave radiation. When the primary and secondary coils are in resonance, a channel of low resistance in the magnetic resonance coupling system is formed. Therefore, it is used for medium-distance power transmission and it has less restrictions on orientation, which means that it has wide applications in many scenarios. Moreover, contact-less power transfer is safer and more concealed than traditional plug power supply, especially in underwater vehicles. Firstly, the mathematical model based on the mutual inductance model is proposed for the CPT system in the air, then the frequency analysis of the CPT model as well as theoretical explanation of the splitting phenomenon is conducted, after that we consider the seawater effect on the mutual inductance coefficient. Secondly, we build a mathematical model of the eddy-current loss in seawater circumstance according to the Maxwell's equations, where we introduce an average magnetic induction in cross section, then derive an approximate formula through Taylor expansion, and analyze the relations between eddy-current loss and the physical parameters including coil radius, resonance frequency, transmission distance, and magnetic induction. According to the theoretical results, we optimize these physical parameters and then design a 754 kHz CPT system, thereafter we validate the CPT system both in the air and in seawater and find the difference between these two circumstances, and verify the relations between eddy-current loss and the physical parameters which are proposed in our theory. It can be learned from the experiment that when transmission distance is 50 mm and transmission power is 100 W in the air, the transmission efficiency is over 80%, and when transmission distance is 50 mm and transmission power is 100 W in seawater, the transmission efficiency is over 67%. Apparently, our magnetic-resonance-coupling-based CPT system has potentials serving as an underwater vehicle.

#### References

 [1] Ho Y L, McCormick D, Budgett D, Hu A P 2013 IEEE International Symposium on Circuits and Systems Beijing, China, May 19-23, 2013 p2787 [2] Sibue J R, Meunier G, Ferrieux J P, Roudet J, Periot R 2013 IEEE Trans. Magn. 49 586 [3] Ping S 2008 Ph. D. Dissertation (Auckland: The University of Auckland) [4] Yang Z, Liu W T, Basham E 2007 IEEE Trans. Magn. 43 3851 [5] Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24-26, 2006 p466 [6] Dehennis A D, Wise K D 2005 J. Microelectromech. Syst. 14 12 [7] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83 [8] Teck C B, Kato M, Imura T, Sehoon O, Hori Y 2013 IEEE Trans. Ind. Electron. 60 3689 [9] Juseop L, Lim Y S, Yang W J, Lim S O 2014 IEEE Trans. Antennas Propag. 62 889 [10] Lim Y, Tang H, Lim S, Park J 2014 IEEE Trans. Power Electron. 29 4403 [11] Fukuda H, Kobayashi N, Shizuno K, Yoshida S, Tanomura M, Hama Y 2013 IEEE International Underwater Technology Symposium Tokyo, Japan March 5-8, 2013 p1 [12] Shizuno K, Yoshida S, Tanomura M, Hama Y 2014 IEEE Oceans Newfoundland Labrador, Canada, September 14-19, 2014 p1 [13] Itoh R, Sawahara Y, Ishizaki T, Awai I 2014 IEEE 3rd Global Conference on Consumer Electronics Tokyo, Japan October 7-10, 2014 p459 [14] Zhou J, Li D J, Chen Y 2013 J. Ocean Eng. 60 175 [15] Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301 [16] Li Y, Li Z, Shen Y, Ren M 2011 Third International Conference on Measuring Technology and Mechatronics Automation Shanghai, China, Jan. 6-7, 2011 p490 [17] Zhu Q W, Wang L F, Liao C L, Guo Y J 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific Beijing, China, August 31-September 3, 2014 p1 [18] Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China, October 22-26, 2006 p794 [19] Sun Y, Xia C Y, Zhao Z B, Zhai Y, Yang F X 2011 Adv. Technol. Electr. Eng. Energy 30 9 (in Chinese) [孙跃, 夏晨阳, 赵志斌, 翟渊, 杨芳勋 2011 电工电能新技术 30 9] [20] Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34 [21] Lei Y Z 2000 The Analysis Method of the Time-varying Electromagnetic Field (Beijing: Science Press) p96 (in Chinese) [雷银照 2000 时谐电磁场解析方法 (北京: 科学出版社) 第96页] [22] Wu J S, Wu C Y, Zhang R G 2014 Eddy Current Technology and Application (Changsha: Central South University Press) p209 (in Chinese) [吴桔生, 吴承燕, 张荣刚 2014 电涡流技术与应用 (长沙: 中南大学出版社) 第209页] [23] Yan J C 2013 The Theory of Electromagnetic (Hefei: Universityof Science and Technology of China) p304 (in Chinese) [严济慈 2013 电磁学 (合肥: 中国科技大学出版社) 第304页] [24] Li Y 2012 Ph. D. Dissertation (Hebei: Hebei University of Technology) (in Chinese) [李阳 2012 博士学位论文(河北: 河北工业大学)]

#### Cited By

•  [1] Ho Y L, McCormick D, Budgett D, Hu A P 2013 IEEE International Symposium on Circuits and Systems Beijing, China, May 19-23, 2013 p2787 [2] Sibue J R, Meunier G, Ferrieux J P, Roudet J, Periot R 2013 IEEE Trans. Magn. 49 586 [3] Ping S 2008 Ph. D. Dissertation (Auckland: The University of Auckland) [4] Yang Z, Liu W T, Basham E 2007 IEEE Trans. Magn. 43 3851 [5] Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24-26, 2006 p466 [6] Dehennis A D, Wise K D 2005 J. Microelectromech. Syst. 14 12 [7] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83 [8] Teck C B, Kato M, Imura T, Sehoon O, Hori Y 2013 IEEE Trans. Ind. Electron. 60 3689 [9] Juseop L, Lim Y S, Yang W J, Lim S O 2014 IEEE Trans. Antennas Propag. 62 889 [10] Lim Y, Tang H, Lim S, Park J 2014 IEEE Trans. Power Electron. 29 4403 [11] Fukuda H, Kobayashi N, Shizuno K, Yoshida S, Tanomura M, Hama Y 2013 IEEE International Underwater Technology Symposium Tokyo, Japan March 5-8, 2013 p1 [12] Shizuno K, Yoshida S, Tanomura M, Hama Y 2014 IEEE Oceans Newfoundland Labrador, Canada, September 14-19, 2014 p1 [13] Itoh R, Sawahara Y, Ishizaki T, Awai I 2014 IEEE 3rd Global Conference on Consumer Electronics Tokyo, Japan October 7-10, 2014 p459 [14] Zhou J, Li D J, Chen Y 2013 J. Ocean Eng. 60 175 [15] Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301 [16] Li Y, Li Z, Shen Y, Ren M 2011 Third International Conference on Measuring Technology and Mechatronics Automation Shanghai, China, Jan. 6-7, 2011 p490 [17] Zhu Q W, Wang L F, Liao C L, Guo Y J 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific Beijing, China, August 31-September 3, 2014 p1 [18] Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China, October 22-26, 2006 p794 [19] Sun Y, Xia C Y, Zhao Z B, Zhai Y, Yang F X 2011 Adv. Technol. Electr. Eng. Energy 30 9 (in Chinese) [孙跃, 夏晨阳, 赵志斌, 翟渊, 杨芳勋 2011 电工电能新技术 30 9] [20] Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34 [21] Lei Y Z 2000 The Analysis Method of the Time-varying Electromagnetic Field (Beijing: Science Press) p96 (in Chinese) [雷银照 2000 时谐电磁场解析方法 (北京: 科学出版社) 第96页] [22] Wu J S, Wu C Y, Zhang R G 2014 Eddy Current Technology and Application (Changsha: Central South University Press) p209 (in Chinese) [吴桔生, 吴承燕, 张荣刚 2014 电涡流技术与应用 (长沙: 中南大学出版社) 第209页] [23] Yan J C 2013 The Theory of Electromagnetic (Hefei: Universityof Science and Technology of China) p304 (in Chinese) [严济慈 2013 电磁学 (合肥: 中国科技大学出版社) 第304页] [24] Li Y 2012 Ph. D. Dissertation (Hebei: Hebei University of Technology) (in Chinese) [李阳 2012 博士学位论文(河北: 河北工业大学)]
•  [1] Yang Chen, Zuo Guan-Hua, Tian Zhuang-Zhuang, Zhang Yu-Chi, Zhang Tian-Cai. Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure. Acta Physica Sinica, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030 [2] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084 [3] Wu Yong-Sheng, Wang Bing. Preparation and physical properties of (BEDT-TTF)[FeBr4] crystal. Acta Physica Sinica, 2012, 61(5): 056104. doi: 10.7498/aps.61.056104 [4] WANG JIA-FU, LIU FENG, WANG JUN-YI, CHEN GUANG, WANG WEI. FREQUENCY CHARACTERISTICS OF THE INPUT THRESHOLDS OF STOCHASTIC RESONANT SYSTEMS. Acta Physica Sinica, 1997, 46(12): 2305-2312. doi: 10.7498/aps.46.2305 [5] ERG-1972, RESEARCH GROUP OP THE THIRD WORKSHOP. ANOMALOUS EDDY CURRENT LOSSES OF ISOPERM THIN STRIPS UNDER SUPERPOSED MAGNETIZATION BY ALTERNATING AND DIRECT CURRENTS. Acta Physica Sinica, 1976, 25(2): 105-114. doi: 10.7498/aps.25.105 [6] LI YIN-FENG, CHEN DU-XING, M.VAZQUEZ, A.HERNANDO, GUO HUI-QUN. ANALYSIS OF EDDY-CURRENT-LOSS IN Fe-BASED AMORPHOUS WIRES. Acta Physica Sinica, 2000, 49(8): 1591-1594. doi: 10.7498/aps.49.1591 [7] Liu Li-Xiang, Dong Li-Juan, Liu Yan-Hong, Yang Cheng-Quan, Shi Yun-Long. Properties of photonic quantum well structures containing left-handed materials. Acta Physica Sinica, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210 [8] Zhang Ru-Yuan, Zhang Xiao-Ming, Peng Jian-Hua. . Acta Physica Sinica, 2002, 51(11): 2467-2474. doi: 10.7498/aps.51.2467 [9] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622 [10] Li Shao-Bo, Yin Chun-Hao, Xu Zhen-Kun, Li Pei-Xin, Wu Cai-Ping, Feng Ming-Yang. Study on magnetic properties of strontium ferrite based on the technology of electron paramagnetic resonance. Acta Physica Sinica, 2015, 64(10): 107502. doi: 10.7498/aps.64.107502 [11] Wang Xiao-Yan, Lu Lun, Cheng Hong-Yan, Wang He, Chen Qi-Te, Yu Jie, Huang Qing-Ming, Huang Yong, Zhang Xue-Long, Li Geng-Ying, Wang Hong-Zhi, Cai Xiao-Yun. Study and realization of local frequency estimation algorithm in magnetic resonance elasto-graphy based on dual-bandwidth Gaussian filters. Acta Physica Sinica, 2011, 60(9): 090204. doi: 10.7498/aps.60.090204 [12] . Study of Multiscale Entropy Model to Evaluate the Cognitive Behavior of Healthy Elderly People Based on Resting State Functional Magnetic Resonance Imaging . Acta Physica Sinica, 2020, (): 008700. doi: 10.7498/aps.69.20200051 [13] Zhang Fu-Yi, Ge Man-Ling, Guo Zhi-Tong, Xie Chong, Yang Ze-Kun, Song Zi-Bo. Study of multiscale entropy model to evaluate the cognitive behavior of healthy elderly people based on resting state functional magnetic resonance imaging. Acta Physica Sinica, 2020, 69(10): 108703. doi: 10.7498/aps.69.20200050 [14] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747 [15] Xin Hong-Liang, Yuan Wang-Zhi, Cheng Jin-Ke, Lin Hong, Ruan Jian-Zhong, Zhao Zhen-Jie. The giant magneto-impedance effect and frequency dependence of magnetization processes in NiFeCoP/BeCu composite wire. Acta Physica Sinica, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152 [16] Wang Xuan, Zheng Fu, Lu Jia, Bai Jian-Min, Wang Ying, Wei Fu-Lin. The effect of AlO and C elements addition on magnetic properties and frequency response of FeCo alloy film. Acta Physica Sinica, 2011, 60(1): 017505. doi: 10.7498/aps.60.017505 [17] Liu Li-Xiang, Dong Li-Juan, Liu Yan-Hong, Yang Chun-Hua, Yang Cheng-Quan, Shi Yun-Long. Frequency properties of the defect mode inside a photonic crystal band-gap with zero average refractive index. Acta Physica Sinica, 2011, 60(8): 084218. doi: 10.7498/aps.60.084218 [18] Song Jian-Jun, Yang Chao, Zhu He, Zhang He-Ming, Xuan Rong-Xi, Hu Hui-Yong, Shu Bin. Structure design and frequency characteristics of SOI SiGe HBT. Acta Physica Sinica, 2014, 63(11): 118501. doi: 10.7498/aps.63.118501 [19] SHAO QIAN-FEN, WU TAI-LIU, CHEN JIAN, CAI RUI-FANG, HUANG ZU-EN. AN 13C NMR STUDY OF NOVEL PHYSICAL PROPERTIES IN (DB18C6)KC60. Acta Physica Sinica, 1997, 46(5): 981-985. doi: 10.7498/aps.46.981 [20] Han Zhi-Quan. A Model of Microwave Loss Due to Spin Wave Resonance in Grain-Surface-Layers. Acta Physica Sinica, 1999, 48(13): 291-297. doi: 10.7498/aps.48.291
•  Citation:
##### Metrics
• Abstract views:  1019
• Cited By: 0
##### Publishing process
• Received Date:  11 September 2015
• Accepted Date:  14 December 2015
• Published Online:  05 February 2016

## Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance

###### Corresponding author: Zhang Ke-Han, zhangkehan210@163.com;
• 1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China

Abstract: In this paper, we investigate the transmission mechanism and eddy-current loss of the contact-less power transmission (CPT) system in seawater environment. Contact-less power transfer could be achieved in the three following ways: magnetic coupling, magnetic resonance coupling, and microwave radiation. When the primary and secondary coils are in resonance, a channel of low resistance in the magnetic resonance coupling system is formed. Therefore, it is used for medium-distance power transmission and it has less restrictions on orientation, which means that it has wide applications in many scenarios. Moreover, contact-less power transfer is safer and more concealed than traditional plug power supply, especially in underwater vehicles. Firstly, the mathematical model based on the mutual inductance model is proposed for the CPT system in the air, then the frequency analysis of the CPT model as well as theoretical explanation of the splitting phenomenon is conducted, after that we consider the seawater effect on the mutual inductance coefficient. Secondly, we build a mathematical model of the eddy-current loss in seawater circumstance according to the Maxwell's equations, where we introduce an average magnetic induction in cross section, then derive an approximate formula through Taylor expansion, and analyze the relations between eddy-current loss and the physical parameters including coil radius, resonance frequency, transmission distance, and magnetic induction. According to the theoretical results, we optimize these physical parameters and then design a 754 kHz CPT system, thereafter we validate the CPT system both in the air and in seawater and find the difference between these two circumstances, and verify the relations between eddy-current loss and the physical parameters which are proposed in our theory. It can be learned from the experiment that when transmission distance is 50 mm and transmission power is 100 W in the air, the transmission efficiency is over 80%, and when transmission distance is 50 mm and transmission power is 100 W in seawater, the transmission efficiency is over 67%. Apparently, our magnetic-resonance-coupling-based CPT system has potentials serving as an underwater vehicle.

Reference (24)

/