Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and on-ramps

Hua Xue-Dong Wang Wei Wang Hao

A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and on-ramps

Hua Xue-Dong, Wang Wei, Wang Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, autonomous vehicles and the relevant studies have attracted much attention. Adaptive cruise control (ACC), which is a kind of cruise control system for vehicles, automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead. Since the vehicle with ACC (called ACC vehicles) is semi-autonomous, the performance of ACC vehicle must be quite different from that of manual vehicle. The characteristics of traffic flow with ACC vehicles should be carefully investigated, especially when the traffic system is a bit complicated, such as on-ramp system. The primary objective of this paper is to propose a traffic flow model to simulate the traffic flow with considering the influence of ACC vehicles and on-ramps. Based on the model proposed by Yuan in 2009 [Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China)], a hybrid traffic flow model with considering the influence of ACC vehicles and on-ramps is developed. Considering the differences between ACC and manual vehicles, a car-following sub-model based on constant time headway principle is developed for ACC vehicles, while an MCD cellular automata sub-model is proposed for manual vehicles. Besides, a new parameter, , is introduced to show different psychologies of drivers when changing lane from on-ramp to main road. The lane-changing model for vehicles on-ramp is developed as well. At the end, numerical simulation is demonstrated to study the influence of ACC vehicles on traffic flow at on-ramp, and to reveal the influence of parameters on the proposed hybrid model (i.e., the length of merge area, the desired time headway of ACC vehicle and ) on model performance. The results of this paper are as follows. 1) When the ACC vehicles exist in a traffic system, the performance of traffic flow in a on-ramp area is improved: the influence of merged vehicles on main road is reduced, and the average speed and volume are increased. 2) The increase of ACC vehicles can help to alleviate traffic congestion in both congestion duration and scope aspects. 3) The newly proposed hybrid model is sensitive to the length of merge area lw, the desired time headway of ACC vehicle Hd and lane-changing psychology parameter : the decrease of Hd and the increase of can both improve the average speed and volume of traffic flow. In addition, when the volume of on-ramp is small, the speed and volume of main road can be improved by enlarging lw. When the volume of on-ramp is large, a small lw will be better for traffic flow.
      Corresponding author: Wang Wei, wangwei@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB725402), the Key Program of the National Natural Science Foundation of China (Grant No. 51338003), the National Natural Science Foundation of China (Grant No. 51478113), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1345).
    [1]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese) [华雪东, 王炜, 王昊 2011 物理学报 60 084502]

    [2]

    Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [袁耀明 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [3]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. Ser. A 22 317

    [4]

    Richards P I 1956 Oper. Res. 4 42

    [5]

    Pipes L A 1969 Transp. Res. 3 229

    [6]

    Payne H J 1971 Math. Meth. Pub. Sys. 28 51

    [7]

    Kuhne R D 1984 Proceeding 9th International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [8]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [9]

    Xue Y, Dai S Q 2003 Phys. Rev. E 68 066123

    [10]

    Tang T Q, Caccetta L, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transport. 48 304

    [11]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [12]

    Peng G H, Song W, Peng Y J, Wang S H 2014 Physica A 398 76

    [13]

    Redhu P, Gupta A K 2015 Physica A 421 249

    [14]

    Gupta A K, Sharma S 2010 Chin. Phys. B 19 110503

    [15]

    Gupta A K, Sharma S 2012 Chin. Phys. B 21 015201

    [16]

    Peng G H, Cai X H, Cao B F, Liu C Q 2012 Physica A 391 656

    [17]

    Treiber M, Henneeke A, Helbing D 1999 Phys. Rev. E 59 239

    [18]

    Herbing D, Treiber M 1998 Granular Matter 1 21

    [19]

    Herbing D 1996 Physica A 233 253

    [20]

    Herbing D 1996 Phys. Rev. E 53 2366

    [21]

    Li L, Shi P F 2005 Chin. Phys. 14 576

    [22]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [23]

    Zeng Y Z, Zhang N, Liu L J 2014 Acta Phys. Sin. 63 068901 (in Chinese) [曾友志, 张宁, 刘利娟 2014 物理学报 63 068901]

    [24]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [25]

    Koutsopoulos H N, Farah H 2012 Trans. Res. B 46 563

    [26]

    Ge H X, Yu J, Lo S M 2012 Chin. Phys. Lett. 29 50502

    [27]

    Ge H X 2011 Chin. Phys. B 20 090502

    [28]

    Zhou T, Sun L H, Zhao M, Li H M 2013 Chin. Phys. B 22 090205

    [29]

    Punzo V, Ciuffo B, Montanino M 2012 Transp. Res. Rec. 2315 11

    [30]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [31]

    Yang D, Qiu X P, Yu D, Sun R X, Pu Y 2015 Physica A 424 62

    [32]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 物理学报 61 244502]

    [33]

    Lrraga M E, Alvarez-Icaza L 2014 Chin. Phys. B 23 050701

    [34]

    Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P 2010 Chin. Phys. B 19 048201

    [35]

    Ez-Zahraouyt H, Jetto K, Benyoussef A 2006 Chin. J. Phys. 44 486

    [36]

    Siebert F W, Oehl M, Pfister H R 2014 Trans. Res. F 25 65

    [37]

    Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu Y H, Wang D 2014 Neurocomputing 125 57

    [38]

    Bishop R 2005 Intelligent Vehicle Technology and Trends (Boston: Artech House) pp127-134

    [39]

    Mark V, Schleicher S, Gelau C 2011 Accident Anal. Prev. 43 1134

    [40]

    Bato J 2011 Ph. D. Dissertation (Seattle: University of Washington)

    [41]

    Orosz G, Moehlis J, Bullo F 2010 Phys. Rev. E 81 025204

    [42]

    Xiao L Y, Gao F 2011 IEEE Trans. Intell. Transp. 12 1184

    [43]

    Davis L C 2012 Phys. Lett. A 376 2658

    [44]

    Werf J V, Shladover S, Miller M, Kourjanskaia N 2002 Transp. Res. Rec. 1800 78

    [45]

    Yuan Y M, Jiang R, Hu M B, Wu Q S, Wang R 2009 Physica A 388 2483

    [46]

    Davis L C 2004 Phys. Rev. E 69 066110

    [47]

    Kesting A, Treiber M, Schonhof M, Helbing D 2008 Transp. Res. C 16 668

    [48]

    Jiang R, Hu M B, Jia B, Wang R, Wu Q S 2007 Eur. Phys. J. B 58 197

    [49]

    Jiang R, Wu Q S 2006 Phys. Lett. A 359 99

    [50]

    Jiang R, Wu Q S 2005 Eur. Phys. J. B 46 581

  • [1]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese) [华雪东, 王炜, 王昊 2011 物理学报 60 084502]

    [2]

    Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [袁耀明 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [3]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. Ser. A 22 317

    [4]

    Richards P I 1956 Oper. Res. 4 42

    [5]

    Pipes L A 1969 Transp. Res. 3 229

    [6]

    Payne H J 1971 Math. Meth. Pub. Sys. 28 51

    [7]

    Kuhne R D 1984 Proceeding 9th International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [8]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [9]

    Xue Y, Dai S Q 2003 Phys. Rev. E 68 066123

    [10]

    Tang T Q, Caccetta L, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transport. 48 304

    [11]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [12]

    Peng G H, Song W, Peng Y J, Wang S H 2014 Physica A 398 76

    [13]

    Redhu P, Gupta A K 2015 Physica A 421 249

    [14]

    Gupta A K, Sharma S 2010 Chin. Phys. B 19 110503

    [15]

    Gupta A K, Sharma S 2012 Chin. Phys. B 21 015201

    [16]

    Peng G H, Cai X H, Cao B F, Liu C Q 2012 Physica A 391 656

    [17]

    Treiber M, Henneeke A, Helbing D 1999 Phys. Rev. E 59 239

    [18]

    Herbing D, Treiber M 1998 Granular Matter 1 21

    [19]

    Herbing D 1996 Physica A 233 253

    [20]

    Herbing D 1996 Phys. Rev. E 53 2366

    [21]

    Li L, Shi P F 2005 Chin. Phys. 14 576

    [22]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [23]

    Zeng Y Z, Zhang N, Liu L J 2014 Acta Phys. Sin. 63 068901 (in Chinese) [曾友志, 张宁, 刘利娟 2014 物理学报 63 068901]

    [24]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [25]

    Koutsopoulos H N, Farah H 2012 Trans. Res. B 46 563

    [26]

    Ge H X, Yu J, Lo S M 2012 Chin. Phys. Lett. 29 50502

    [27]

    Ge H X 2011 Chin. Phys. B 20 090502

    [28]

    Zhou T, Sun L H, Zhao M, Li H M 2013 Chin. Phys. B 22 090205

    [29]

    Punzo V, Ciuffo B, Montanino M 2012 Transp. Res. Rec. 2315 11

    [30]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [31]

    Yang D, Qiu X P, Yu D, Sun R X, Pu Y 2015 Physica A 424 62

    [32]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 物理学报 61 244502]

    [33]

    Lrraga M E, Alvarez-Icaza L 2014 Chin. Phys. B 23 050701

    [34]

    Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P 2010 Chin. Phys. B 19 048201

    [35]

    Ez-Zahraouyt H, Jetto K, Benyoussef A 2006 Chin. J. Phys. 44 486

    [36]

    Siebert F W, Oehl M, Pfister H R 2014 Trans. Res. F 25 65

    [37]

    Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu Y H, Wang D 2014 Neurocomputing 125 57

    [38]

    Bishop R 2005 Intelligent Vehicle Technology and Trends (Boston: Artech House) pp127-134

    [39]

    Mark V, Schleicher S, Gelau C 2011 Accident Anal. Prev. 43 1134

    [40]

    Bato J 2011 Ph. D. Dissertation (Seattle: University of Washington)

    [41]

    Orosz G, Moehlis J, Bullo F 2010 Phys. Rev. E 81 025204

    [42]

    Xiao L Y, Gao F 2011 IEEE Trans. Intell. Transp. 12 1184

    [43]

    Davis L C 2012 Phys. Lett. A 376 2658

    [44]

    Werf J V, Shladover S, Miller M, Kourjanskaia N 2002 Transp. Res. Rec. 1800 78

    [45]

    Yuan Y M, Jiang R, Hu M B, Wu Q S, Wang R 2009 Physica A 388 2483

    [46]

    Davis L C 2004 Phys. Rev. E 69 066110

    [47]

    Kesting A, Treiber M, Schonhof M, Helbing D 2008 Transp. Res. C 16 668

    [48]

    Jiang R, Hu M B, Jia B, Wang R, Wu Q S 2007 Eur. Phys. J. B 58 197

    [49]

    Jiang R, Wu Q S 2006 Phys. Lett. A 359 99

    [50]

    Jiang R, Wu Q S 2005 Eur. Phys. J. B 46 581

  • [1] Kuang Hua, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton traffic flow model with mixed different-maximum-speed vehicles on single lane. Acta Physica Sinica, 2004, 53(9): 2894-2898. doi: 10.7498/aps.53.2894
    [2] Kuang Hua, Kong Ling-Jiang, Liu Mu-Ren. The study of the effect of delay probability on mixed vehiclessensitive driving traffic flow model. Acta Physica Sinica, 2004, 53(12): 4138-4144. doi: 10.7498/aps.53.4138
    [3] Yuan Na, Hua Cun-Cai. Analysis of the stability and solitary waves for multi-velocity difference car-following model of traffic flow. Acta Physica Sinica, 2012, 61(16): 160509. doi: 10.7498/aps.61.160509
    [4] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [5] Qian Yong-Sheng, Wang Hai-Long, Wang Chun-Lei. The study of a cellular automaton traffic flow model with public transit,harbor-shaped bus stop and mixed different-maximum-speed vehicles on single lane. Acta Physica Sinica, 2008, 57(4): 2115-2121. doi: 10.7498/aps.57.2115
    [6] Ge Hong-Xia, Dai Shi-Qiang, Zhu Hui-Bing. Cellular automaton traffic flow model considering intelligent transportation system. Acta Physica Sinica, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [7] Lei Li, Dong Li-Yun, Song Tao, Dai Shi-Qiang. Study on the traffic flow of weaving section in elevated road system with cellular automaton model. Acta Physica Sinica, 2006, 55(4): 1711-1717. doi: 10.7498/aps.55.1711
    [8] Zhang Ning-Xi, Zhu Hui-Bing, Lin Heng, Huang Meng-Yuan. One-dimensional cellular automaton model of traffic flow considering dynamic headway. Acta Physica Sinica, 2015, 64(2): 024501. doi: 10.7498/aps.64.024501
    [9] HU BAMBI, HUI PAK-MING, WANG BING-HONG, WANG LEI. THE GRADUAL ACCELERATING TRAFFIC FLOW GELLULAR AUTOMATON MODEL IN WHICH ONLY HIG H SPEED CAR CAN BE DELAYED. Acta Physica Sinica, 2000, 49(10): 1926-1932. doi: 10.7498/aps.49.1926
    [10] Dai Shi-Qiang, Xue Yu, Lei Li. One-dimensional sensitive driving cellular automaton model for traffic flow. Acta Physica Sinica, 2003, 52(9): 2121-2126. doi: 10.7498/aps.52.2121
    [11] Chen Xuan, Gao Zi-You, Zhao Xiao-Mei, Jia Bin. Study on the two-lane feedback controled car-following model. Acta Physica Sinica, 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [12] Zeng You-Zhi, Zhang Ning, Liu Li-Juan. A new car-following model considering drivers heterogeneity of the disturbance risk appetite. Acta Physica Sinica, 2014, 63(6): 068901. doi: 10.7498/aps.63.068901
    [13] Jia Ning, Ma Shou-Feng. Comparison between the optimal velocity model and the Nagel-Schreckenberg model. Acta Physica Sinica, 2010, 59(2): 832-841. doi: 10.7498/aps.59.832
    [14] Hua Xue-Dong, Wang Wei, Wang Hao. A car-following model with the consideration of vehicle-to-vehicle communication technology. Acta Physica Sinica, 2016, 65(1): 010502. doi: 10.7498/aps.65.010502
    [15] Xue Yu. A car-following model with stochastically considering the relative velocity in a traffic flow. Acta Physica Sinica, 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
    [16] Study of gear-alternating control regulation in the interfluent location of on-ramps with cellular automaton model. Acta Physica Sinica, 2007, 56(12): 6874-6880. doi: 10.7498/aps.56.6874
    [17] Tang Tie-Qiao, Ding Jian-Xun, Huang Hai-Jun. A cellular automaton model of traffic considering the dynamic evolution of velocity randomization probability. Acta Physica Sinica, 2009, 58(11): 7591-7595. doi: 10.7498/aps.58.7591
    [18] Zhang Jing-Jing, Pang Ming-Bao, Ren Sha-Sha. Characteristic analysis of traffic flow in variable speed limit section of freeway based on cellular automaton model. Acta Physica Sinica, 2012, 61(24): 244503. doi: 10.7498/aps.61.244503
    [19] Ye Jing-Jing, Li Ke-Ping, Jin Xin-Min. Simulation of optimal control of train movement based on car-following model. Acta Physica Sinica, 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [20] Ge Hong-Xia, Cui Yu, Cheng Rong-Jun. A car-following model with considering control signals from front and rear. Acta Physica Sinica, 2014, 63(11): 110504. doi: 10.7498/aps.63.110504
  • Citation:
Metrics
  • Abstract views:  878
  • PDF Downloads:  346
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2015
  • Accepted Date:  10 January 2016
  • Published Online:  05 April 2016

A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and on-ramps

    Corresponding author: Wang Wei, wangwei@seu.edu.cn
  • 1. Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China;
  • 2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2012CB725402), the Key Program of the National Natural Science Foundation of China (Grant No. 51338003), the National Natural Science Foundation of China (Grant No. 51478113), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1345).

Abstract: Recently, autonomous vehicles and the relevant studies have attracted much attention. Adaptive cruise control (ACC), which is a kind of cruise control system for vehicles, automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead. Since the vehicle with ACC (called ACC vehicles) is semi-autonomous, the performance of ACC vehicle must be quite different from that of manual vehicle. The characteristics of traffic flow with ACC vehicles should be carefully investigated, especially when the traffic system is a bit complicated, such as on-ramp system. The primary objective of this paper is to propose a traffic flow model to simulate the traffic flow with considering the influence of ACC vehicles and on-ramps. Based on the model proposed by Yuan in 2009 [Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China)], a hybrid traffic flow model with considering the influence of ACC vehicles and on-ramps is developed. Considering the differences between ACC and manual vehicles, a car-following sub-model based on constant time headway principle is developed for ACC vehicles, while an MCD cellular automata sub-model is proposed for manual vehicles. Besides, a new parameter, , is introduced to show different psychologies of drivers when changing lane from on-ramp to main road. The lane-changing model for vehicles on-ramp is developed as well. At the end, numerical simulation is demonstrated to study the influence of ACC vehicles on traffic flow at on-ramp, and to reveal the influence of parameters on the proposed hybrid model (i.e., the length of merge area, the desired time headway of ACC vehicle and ) on model performance. The results of this paper are as follows. 1) When the ACC vehicles exist in a traffic system, the performance of traffic flow in a on-ramp area is improved: the influence of merged vehicles on main road is reduced, and the average speed and volume are increased. 2) The increase of ACC vehicles can help to alleviate traffic congestion in both congestion duration and scope aspects. 3) The newly proposed hybrid model is sensitive to the length of merge area lw, the desired time headway of ACC vehicle Hd and lane-changing psychology parameter : the decrease of Hd and the increase of can both improve the average speed and volume of traffic flow. In addition, when the volume of on-ramp is small, the speed and volume of main road can be improved by enlarging lw. When the volume of on-ramp is large, a small lw will be better for traffic flow.

Reference (50)

Catalog

    /

    返回文章
    返回