Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Healing of oxygen defects on VO2 surface: F4TCNQ adsorption

Wang Kai Zhang Wen-Hua Liu Ling-Yun Xu Fa-Qiang

Healing of oxygen defects on VO2 surface: F4TCNQ adsorption

Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Oxygen-defect vacancies that routinely exist in wet production of VO2 material or on the surface of VO2 single crystal after surface treatment have significant influence on the metal-insulator phase transition features mainly due to their enhanced effect of doping on V 3d electronic structure. The removal of the surface oxygen defects is highly desired for investigating the VO2 intrinsic electronic properties. In this work, we propose a charge transfer doping method by using strong electric affinity molecule tetrafluorotetracyanoquinodimethane (F4TCNQ) adsorption rather than the normal thermal annealing in oxygen atmosphere to heal the surface oxygen defects of VO2 crystalline film. The healing effect is probed by the electronic structure evolution at the F4TCNQ/VO2 interface. The VO2 crystalline film is grown by an oxygen plasma assisted molecular beam epitaxy method on an Al2O3(0001) substrate. Surface oxygen defects on VO2 film are produced after a mild sputtering with an ionic energy of 1 keV and a thermal annealing in vacuum at 100 ℃. The influence of F4TCNQ molecule adsorption on the electronic structure of the sputtered VO2 film is studied by using in-situ synchrotron-based photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). XPS and XAS results demonstrate convincingly that V3+ species of sputtered VO2 are oxidized into the V4+ and simultaneously negative molecular ions form at F4TCNQ/VO2 interface resulting from the electron transfer from VO2 to the F4TCNQ layer. The preferred adsorption on surface defects and the strong electron withdrawing function of F4TCNQ molecules may account for the effective elimination of the electron doping effect of oxygen defects on VO2 surface. This charge transfer effect at interface recovers the electronic properties of VO2. Compared with thermal annealing in oxygen environment, the healing of oxygen defects by the molecular adsorption can prevent the surface from over oxidating VO2 into V2O5, which opens a new route to surface defect healing.
      Corresponding author: Xu Fa-Qiang, fqxu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175172, U1232137, u1332133) and the Science Research Program of Hefei Scientific Center, Chinese Academy of Sciences (Grant No. 2015SRG-HSC032).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [3]

    Park J H, Coy M J, Kasirga S, Huang C, Fei Z, Hunter S, Cobden H D 2013 Nature 500 431

    [4]

    Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X 2013 Sci. Rep. 3 3029

    [5]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst D M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [6]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [7]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [8]

    Surnev S, Ramsey M G, Netzer F P 2003 Prog. Surf. Sci. 73 117

    [9]

    Wu Y F, Fan L L, Liu Q H, Chen S, Huang W F, Chen F H, Liao G M, Zou C W, Wu Z Y 2015 Sci. Rep. 5 9328

    [10]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101

    [11]

    Zhou H J, Cao X, Jiang M, Bao S H, Jin P 2014 Laser Photon. Rev. 8 617

    [12]

    Zhou H J, Li J H, Xin Y C, Cao X, Bao S H, Jin P 2015 J. Mater. Chem. C 3 5089

    [13]

    Mendialdua J, Casanova R, Barbaux Y 1995 J. Electron. Spectrosc. Relat. Phenom. 71 249

    [14]

    Yang T H, Nori S, Zhou H, Narayan J 2009 Appl. Phys. Lett. 95 102506

    [15]

    Gupta A, Narayan J, Dutta T 2010 Appl. Phys. Lett. 97 151912

    [16]

    Tashman J W, Lee J H, Paik H, Moyer A W, Misra R, Mundy J A, Spila T, Merz T A, Schubert J, Muller D A, Schiffer P, Schlom D G 2014 Appl. Phys. Lett. 104 063104

    [17]

    Fan L L, Chen S, Wu Y F, Chen F H, Chu W S, Chen X, Zou C W, Wu Z Y 2013 Appl. Phys. Let. 103 131914

    [18]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [19]

    Tsai K Y, Chin T S, Shieh H P D 2003 Jpn. J. Appl. Phys. 42 4480

    [20]

    Yu S, Ahmadi S, Sun C H, Palmgren P, Hennies F, Zuleta M, Gthelid M 2010 J. Phys. Chem. C 114 2315

    [21]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [22]

    Chen W, Qi D C, Gao X Y, Wee A T S 2009 Prog. Surf. Sci. 84 279

    [23]

    Silversmit G, Depla D, Poelman H, Marin G B, Gryse R D 2004 J. Electron. Spectrosc. Relat. Phenom. 135 167

    [24]

    Okimura K, Suzuki Y 2011 Jpn. J. Appl. Phys. 50 065803

    [25]

    Zimmermann R, Claessen R, Reinert F, Steiner P, Hufner S 1998 J. Phys.: Condens. Matter 10 5697

    [26]

    Groot F M F, Fuggle J C, Thole B T, Sawatzky G A 1990 Phys. Rev. B 42 5459

    [27]

    Soriano L, Abbate M, Fuggle J C, Jimenez M A, Sanz J M, Mythen C, Padmore H A 1993 Solid State Commun. 87 699

    [28]

    Groot F M F, Grioni M, Fuggle J C, Ghijsen J, Petersen H 1989 Phys. Rev. B 40 5715

    [29]

    Ruzmetov D, Sanjaya D, Ramanathan S 2007 Phys. Rev. B 75 195102

    [30]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov V, Korotin M A, Anisimov V I, Hsieh H H, Lin H J, Chen C T, Khomskii D I, Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [31]

    Fraxedas J, Lee Y J, Jimnez I, Gago R, Nieminen R M, Ordejon P, Canadell E 2003 Phys. Rev. B 68 195115

    [32]

    Tseng T C, Urban C, Wang Y, Otero R, Tait S, Alcami M, Ecija D, Trelka M, Gallego J M, Lin N, Konuma M, Starke U, Nefedow A, Langner A, Woll C, Herranz M A, Martin F, Martin N, Kern K, Miranda R 2010 Nature. Chem. 2 374

    [33]

    Qi D, Chen W, Gao X Y, Wang L, Chen S, Loh P K, Wee T S W 2007 J. Am. Chem. Soc. 129 8084

    [34]

    Koch N, Duhm S, Rabe J P, Vollmer A, Johnson R L 2005 Phys. Rev. Lett. 95 237601

    [35]

    Tian X Q, Xu J B, Wang X M 2010 J. Phys. Chem. B 114 11377

    [36]

    Le T H, Nafady A, Qu X H, Matin L L, Bond A M 2011 Anal. Chem. 83 6731

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [3]

    Park J H, Coy M J, Kasirga S, Huang C, Fei Z, Hunter S, Cobden H D 2013 Nature 500 431

    [4]

    Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X 2013 Sci. Rep. 3 3029

    [5]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst D M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [6]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [7]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [8]

    Surnev S, Ramsey M G, Netzer F P 2003 Prog. Surf. Sci. 73 117

    [9]

    Wu Y F, Fan L L, Liu Q H, Chen S, Huang W F, Chen F H, Liao G M, Zou C W, Wu Z Y 2015 Sci. Rep. 5 9328

    [10]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101

    [11]

    Zhou H J, Cao X, Jiang M, Bao S H, Jin P 2014 Laser Photon. Rev. 8 617

    [12]

    Zhou H J, Li J H, Xin Y C, Cao X, Bao S H, Jin P 2015 J. Mater. Chem. C 3 5089

    [13]

    Mendialdua J, Casanova R, Barbaux Y 1995 J. Electron. Spectrosc. Relat. Phenom. 71 249

    [14]

    Yang T H, Nori S, Zhou H, Narayan J 2009 Appl. Phys. Lett. 95 102506

    [15]

    Gupta A, Narayan J, Dutta T 2010 Appl. Phys. Lett. 97 151912

    [16]

    Tashman J W, Lee J H, Paik H, Moyer A W, Misra R, Mundy J A, Spila T, Merz T A, Schubert J, Muller D A, Schiffer P, Schlom D G 2014 Appl. Phys. Lett. 104 063104

    [17]

    Fan L L, Chen S, Wu Y F, Chen F H, Chu W S, Chen X, Zou C W, Wu Z Y 2013 Appl. Phys. Let. 103 131914

    [18]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [19]

    Tsai K Y, Chin T S, Shieh H P D 2003 Jpn. J. Appl. Phys. 42 4480

    [20]

    Yu S, Ahmadi S, Sun C H, Palmgren P, Hennies F, Zuleta M, Gthelid M 2010 J. Phys. Chem. C 114 2315

    [21]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [22]

    Chen W, Qi D C, Gao X Y, Wee A T S 2009 Prog. Surf. Sci. 84 279

    [23]

    Silversmit G, Depla D, Poelman H, Marin G B, Gryse R D 2004 J. Electron. Spectrosc. Relat. Phenom. 135 167

    [24]

    Okimura K, Suzuki Y 2011 Jpn. J. Appl. Phys. 50 065803

    [25]

    Zimmermann R, Claessen R, Reinert F, Steiner P, Hufner S 1998 J. Phys.: Condens. Matter 10 5697

    [26]

    Groot F M F, Fuggle J C, Thole B T, Sawatzky G A 1990 Phys. Rev. B 42 5459

    [27]

    Soriano L, Abbate M, Fuggle J C, Jimenez M A, Sanz J M, Mythen C, Padmore H A 1993 Solid State Commun. 87 699

    [28]

    Groot F M F, Grioni M, Fuggle J C, Ghijsen J, Petersen H 1989 Phys. Rev. B 40 5715

    [29]

    Ruzmetov D, Sanjaya D, Ramanathan S 2007 Phys. Rev. B 75 195102

    [30]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov V, Korotin M A, Anisimov V I, Hsieh H H, Lin H J, Chen C T, Khomskii D I, Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [31]

    Fraxedas J, Lee Y J, Jimnez I, Gago R, Nieminen R M, Ordejon P, Canadell E 2003 Phys. Rev. B 68 195115

    [32]

    Tseng T C, Urban C, Wang Y, Otero R, Tait S, Alcami M, Ecija D, Trelka M, Gallego J M, Lin N, Konuma M, Starke U, Nefedow A, Langner A, Woll C, Herranz M A, Martin F, Martin N, Kern K, Miranda R 2010 Nature. Chem. 2 374

    [33]

    Qi D, Chen W, Gao X Y, Wang L, Chen S, Loh P K, Wee T S W 2007 J. Am. Chem. Soc. 129 8084

    [34]

    Koch N, Duhm S, Rabe J P, Vollmer A, Johnson R L 2005 Phys. Rev. Lett. 95 237601

    [35]

    Tian X Q, Xu J B, Wang X M 2010 J. Phys. Chem. B 114 11377

    [36]

    Le T H, Nafady A, Qu X H, Matin L L, Bond A M 2011 Anal. Chem. 83 6731

  • [1] She Yan-Chao, Zhang Wei-Xi, Wang Ying, Luo Kai-Wu, Jiang Xiao-Wei. Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film. Acta Physica Sinica, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [2] Sun Dan-Dan, Chen Zhi, Wen Qi-Ye, Qiu Dong-Hong, Lai Wei-En, Dong Kai, Zhao Bi-Hui, Zhang Huai-Wu. VO2 low temperature deposition and terahertz transmission modulation. Acta Physica Sinica, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [3] Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu. Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them. Acta Physica Sinica, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [4] Li Jin-Hua, Yuan Ning-Yi, Xie Tai-Bin, Dan Di-Di. Preparation of polycrystalline V0.97W0.03O2 thin films with ultra high TCR at room temperature. Acta Physica Sinica, 2007, 56(3): 1790-1795. doi: 10.7498/aps.56.1790
    [5] Meng Chun-Xia, Huang Shi-Hua, You Fang-Tian, Chang Jian-Jun, Peng Hong-Shang, Tao Ye, Zhang Guo-Bin. Vacuum ultraviolet spectroscopic properties and 4f5d state of Pr3+doped YAG. Acta Physica Sinica, 2005, 54(11): 5468-5473. doi: 10.7498/aps.54.5468
    [6] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [7] Wang Qiao-Zhan, Yu Run-Sheng, Qin Xiu-Bo, Li Yu-Xiao, Wang Bao-Yi, Jia Quan-Jie. Pore structure determination of mesoporous SiO2 thin films by slow positron annihilation spectroscopy. Acta Physica Sinica, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [8] Guo Xiao-Yun, Shi Cai-Tu, Zhang Jiu-Chang, Xin Hong-Bing. Characteristics of synchrotron radiation and the structure of the permanent magnetic wiggler. Acta Physica Sinica, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [9] Wang Si-Sheng, Kong Rui-Hong, Tian Zhen-Yu, Shan Xiao-Bin, Zhang Yun-Wu, Sheng Liu-Si, Wang Zhen-Ya, Hao Li-Qing, Zhou Shi-Kang. Research on photoionization of Ar·NO cluster using synchrotron radiation. Acta Physica Sinica, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [10] Li Yi-Ding, Zhang Peng-Fei, Zhang Hui, Xu Hong-Liang. Modification from the spin to the synchrotron radiation from a relativistic electron. Acta Physica Sinica, 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [11] Zou Chong-Wen, Sun Bai, Wang Guo-Dong, Zhang Wen-Hua, Xu Peng-Shou, Pan Hai-Bin, Xu Fa-Qiang, Yin Zhi-Jun, Qiu Kai. Synchrotron radiation study on Au/GaN(0001) interface with low coverage. Acta Physica Sinica, 2005, 54(8): 3793-3798. doi: 10.7498/aps.54.3793
    [12] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [13] Wang Min, Cen Yu-Wan, Hu Xiao-Fang, Yu Xiao-Liu, Zhu Pei-Ping. Error mechanism of light source for synchrotron radiation computed tomography technique. Acta Physica Sinica, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [14] Chen Bo-Lun, Yang Zheng-Hua, Cao Zhu-Rong, Dong Jian-Jun, Hou Li-Fei, Cui Yan-Li, Jiang Shao-En, Yi Rong-Qing, Li San-Wei, Liu Shen-Ye, Yang Jia-Min. Reflectivity uncertainty analysis of planar mirror calibration in BSRF. Acta Physica Sinica, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [15] Zhang Qiang, Hiroyuki Toda. Synchrotron K-edge subtraction imaging and its application to metallic foams. Acta Physica Sinica, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [16] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [17] Zhang Yao, Tang Shan-Zhi, Li Ming, Wang Li-Chao, Gao Jun-Xiang. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources. Acta Physica Sinica, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [18] Yang Chang-Ping, Chen Shun-Sheng, Dai Qi, Guo Ding-He, Wang Hao. Spin-dependent electroresistance in Nd0.67Sr0.33MnOy(y<3.0). Acta Physica Sinica, 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [19] Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei. Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth. Acta Physica Sinica, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [20] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
  • Citation:
Metrics
  • Abstract views:  1077
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2015
  • Accepted Date:  14 January 2016
  • Published Online:  05 April 2016

Healing of oxygen defects on VO2 surface: F4TCNQ adsorption

    Corresponding author: Xu Fa-Qiang, fqxu@ustc.edu.cn
  • 1. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11175172, U1232137, u1332133) and the Science Research Program of Hefei Scientific Center, Chinese Academy of Sciences (Grant No. 2015SRG-HSC032).

Abstract: Oxygen-defect vacancies that routinely exist in wet production of VO2 material or on the surface of VO2 single crystal after surface treatment have significant influence on the metal-insulator phase transition features mainly due to their enhanced effect of doping on V 3d electronic structure. The removal of the surface oxygen defects is highly desired for investigating the VO2 intrinsic electronic properties. In this work, we propose a charge transfer doping method by using strong electric affinity molecule tetrafluorotetracyanoquinodimethane (F4TCNQ) adsorption rather than the normal thermal annealing in oxygen atmosphere to heal the surface oxygen defects of VO2 crystalline film. The healing effect is probed by the electronic structure evolution at the F4TCNQ/VO2 interface. The VO2 crystalline film is grown by an oxygen plasma assisted molecular beam epitaxy method on an Al2O3(0001) substrate. Surface oxygen defects on VO2 film are produced after a mild sputtering with an ionic energy of 1 keV and a thermal annealing in vacuum at 100 ℃. The influence of F4TCNQ molecule adsorption on the electronic structure of the sputtered VO2 film is studied by using in-situ synchrotron-based photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). XPS and XAS results demonstrate convincingly that V3+ species of sputtered VO2 are oxidized into the V4+ and simultaneously negative molecular ions form at F4TCNQ/VO2 interface resulting from the electron transfer from VO2 to the F4TCNQ layer. The preferred adsorption on surface defects and the strong electron withdrawing function of F4TCNQ molecules may account for the effective elimination of the electron doping effect of oxygen defects on VO2 surface. This charge transfer effect at interface recovers the electronic properties of VO2. Compared with thermal annealing in oxygen environment, the healing of oxygen defects by the molecular adsorption can prevent the surface from over oxidating VO2 into V2O5, which opens a new route to surface defect healing.

Reference (36)

Catalog

    /

    返回文章
    返回