Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study

Bai Jing Wang Xiao-Shu Zu Qi-Rui Zhao Xiang Zuo Liang

Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study

Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ferromagnetic shape memory alloys (FSMAs) have received much attention as high performance sensor and actuator materials, since a large magnetic-field-induced strain by the rearrangement of twin variants in the martensitic phase was reported. Up to now, several FSMAs including Ni-Mn-Ga, Ni-Fe-Ga, Co-Ni-Ga, Ni-Mn-Al systems have been studied. Vast amount of knowledge accumulated at the properties of Ni-Mn-Ga Heusler alloys in the past decade can foresee the possibility of employing these alloys in device applications. However, the actuation output stress level of the Ni-Mn-Ga alloy is only less than 5 MPa, which represents a shortcoming of this alloy system. Recently, an unusual type of FSMAs Ni-Co-Mn-In Heusler alloy has been experimentally investigated. It shows magnetic-field-induced reverse martensitic transition (MFIRT), making it more attractive for practical application as magnetically driven actuator because it possesses a magnetostress level on the order of tens of MPa. An almost perfect shape memory effect associated with this phase transition is induced by a magnetic field and is called the metamagnetic shape memory effect. NiMnIn is the basic ternary alloy system of the NiMnInCo alloy, and possesses the same metamagnetic shape memory effect. Moreover, large magnetoresistance, large entropy change that generates giant reverse magnetocaloric effects (MCEs), giant Hall effect have been discovered in Ni-Mn-In alloys. Composition adjustment must be carried out around stoichiometric Ni2MnIn in order to obtain the appropriate martensitic transformation temperature and Curie temperature. Therefore, a variety of point defects would be generated in this process. In this paper, the defect formation energy and magnetic properties of the off-stoichiometric Ni-X-In (X= Mn, Fe and Co) alloys are systematically investigated by the first-principle calculations within the framework of the density functional theory through using the Vienna ab initio software package. The In and Ni antisites at the site of the X sublattice (InX and NiX) have the relatively low formation energies. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site (s) of the deficient one (s), except for In-rich Ni-deficient composition. In the latter case, the defect pair (InX+XNi) is energetically more favorable. The formation energy of Ni vacancy is the lowest and that of In vacancy is the highest in the vacancy-type defects. It is confirmed that the In constituent is dominant for the stability of the parent phase. The value of the Ni magnetic moment sensitively depends on the distance between Ni and X atoms. The smaller the distance, the larger the Ni magnetic moment will be. For the anti-site type point defect, when the extra X atom occupies a Ni site, most of the free electrons gather around the extra X atom; while the extra X occupies an In position, the charges are regularly distributed between Ni and extra-X atoms. Moreover, with the increase of the X atomic number, the number of the valence electrons increases, and the bonding strength between the extra X and its neighboring Ni is also enhanced. The results are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.
      Corresponding author: Bai Jing, baij@neuq.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51431005, 51301036), the National High Technology Research and Development Program of China (Grant No. 2015AA034101), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. N130523001) and the Natural Science Foundation of Hebei Province, China (Grant No. E2013501089).
    [1]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [4]

    Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503

    [5]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [6]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [7]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503

    [8]

    Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503

    [9]

    Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25

    [10]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [11]

    Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506

    [12]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [13]

    Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413

    [14]

    Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830

    [15]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [16]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

    [17]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [18]

    Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258

    [19]

    Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

    [20]

    Hafner J 2000 Acta Mater. 48 71

    [21]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245

    [25]

    Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Raulot J M, Domain C 2005 Phys. Rev. B 71 035203

    [28]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

  • [1]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [4]

    Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503

    [5]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [6]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [7]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503

    [8]

    Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503

    [9]

    Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25

    [10]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [11]

    Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506

    [12]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [13]

    Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413

    [14]

    Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830

    [15]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [16]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

    [17]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [18]

    Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258

    [19]

    Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

    [20]

    Hafner J 2000 Acta Mater. 48 71

    [21]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245

    [25]

    Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Raulot J M, Domain C 2005 Phys. Rev. B 71 035203

    [28]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

  • [1] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [2] Peng Li-Ping, Xia Zheng-Cai, Yin Jian-Wu. First-principles calculation of rutile and anatase TiO2 intrinsic defect. Acta Physica Sinica, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [3] Chen Jia-Hua, Liu En-Ke, Li Yong, Qi Xin, Liu Guo-Dong, Luo Hong-Zhi, Wang Wen-Hong, Wu Guang-Heng. First-principles investigations on tetragonal distortion, electronic structure, magnetism, and phonon dispersion of Ga2XCr (X = Mn, Fe, Co, Ni, Cu) Heusler alloys. Acta Physica Sinica, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [4] Li Kai, Tang Yong-Jian, Luo Jiang-Shan, Yi Yong, Ding Zhi-Jie. First-principles calculations of electronic structure and magnetism of Ni4NdB. Acta Physica Sinica, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [5] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [6] Liu Tao, Li Wei. The effect of aging treatment on the magnetic properties of PtCo alloys. Acta Physica Sinica, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [7] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [8] Zhang Jian-Min, Li Shu-Li. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [9] Wei Jie, Chen Yan-Jun, Xu Zhuo. Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles. Acta Physica Sinica, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [10] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [11] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [12] Peng Li-Ping, Xia Zheng-Cai, Yang Chang-Quan. First-principles calculation of matal and nonmetal codoped anantase TiO2. Acta Physica Sinica, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [13] Song Fu-Zhan, Shen Xiang-Qian, Chu Yan-Qiu, Xiang Jun. Preparation of one-dimensional Ni0.5Zn0.5Fe2O4/SiO2 composite nanostructures and their magnetic properties. Acta Physica Sinica, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [14] Li Wan-Jun, Fang Liang, Qin Guo-Ping, Ruan Hai-Bo, Kong Chun-Yang, Zheng Ji, Bian Ping, Xu Qing, Wu Fang. First-principles study of Ag-N dual-doped p-type ZnO. Acta Physica Sinica, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [15] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [16] Zhang Zhi-Dong. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials. Acta Physica Sinica, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [17] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [18] Liu Tao, Guo Zhao-Hui, Li Xiu-Mei, Li Wei. Effect of microstructure on the magnetic properties of Pt-Co permanent magnetic alloy. Acta Physica Sinica, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [19] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [20] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
  • Citation:
Metrics
  • Abstract views:  933
  • PDF Downloads:  272
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2016
  • Accepted Date:  16 February 2016
  • Published Online:  05 May 2016

Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study

    Corresponding author: Bai Jing, baij@neuq.edu.cn
  • 1. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 100819, China;
  • 2. School of Resources and Materials, Northeastern University at Qinhuangdao Branch, Qinhuangdao 066004, China;
  • 3. Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Qinhuangdao 066004, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51431005, 51301036), the National High Technology Research and Development Program of China (Grant No. 2015AA034101), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. N130523001) and the Natural Science Foundation of Hebei Province, China (Grant No. E2013501089).

Abstract: Ferromagnetic shape memory alloys (FSMAs) have received much attention as high performance sensor and actuator materials, since a large magnetic-field-induced strain by the rearrangement of twin variants in the martensitic phase was reported. Up to now, several FSMAs including Ni-Mn-Ga, Ni-Fe-Ga, Co-Ni-Ga, Ni-Mn-Al systems have been studied. Vast amount of knowledge accumulated at the properties of Ni-Mn-Ga Heusler alloys in the past decade can foresee the possibility of employing these alloys in device applications. However, the actuation output stress level of the Ni-Mn-Ga alloy is only less than 5 MPa, which represents a shortcoming of this alloy system. Recently, an unusual type of FSMAs Ni-Co-Mn-In Heusler alloy has been experimentally investigated. It shows magnetic-field-induced reverse martensitic transition (MFIRT), making it more attractive for practical application as magnetically driven actuator because it possesses a magnetostress level on the order of tens of MPa. An almost perfect shape memory effect associated with this phase transition is induced by a magnetic field and is called the metamagnetic shape memory effect. NiMnIn is the basic ternary alloy system of the NiMnInCo alloy, and possesses the same metamagnetic shape memory effect. Moreover, large magnetoresistance, large entropy change that generates giant reverse magnetocaloric effects (MCEs), giant Hall effect have been discovered in Ni-Mn-In alloys. Composition adjustment must be carried out around stoichiometric Ni2MnIn in order to obtain the appropriate martensitic transformation temperature and Curie temperature. Therefore, a variety of point defects would be generated in this process. In this paper, the defect formation energy and magnetic properties of the off-stoichiometric Ni-X-In (X= Mn, Fe and Co) alloys are systematically investigated by the first-principle calculations within the framework of the density functional theory through using the Vienna ab initio software package. The In and Ni antisites at the site of the X sublattice (InX and NiX) have the relatively low formation energies. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site (s) of the deficient one (s), except for In-rich Ni-deficient composition. In the latter case, the defect pair (InX+XNi) is energetically more favorable. The formation energy of Ni vacancy is the lowest and that of In vacancy is the highest in the vacancy-type defects. It is confirmed that the In constituent is dominant for the stability of the parent phase. The value of the Ni magnetic moment sensitively depends on the distance between Ni and X atoms. The smaller the distance, the larger the Ni magnetic moment will be. For the anti-site type point defect, when the extra X atom occupies a Ni site, most of the free electrons gather around the extra X atom; while the extra X occupies an In position, the charges are regularly distributed between Ni and extra-X atoms. Moreover, with the increase of the X atomic number, the number of the valence electrons increases, and the bonding strength between the extra X and its neighboring Ni is also enhanced. The results are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.

Reference (28)

Catalog

    /

    返回文章
    返回