Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect

Zhou Hang Zheng Qi-Wen Cui Jiang-Wei Yu Xue-Feng Guo Qi Ren Di-Yuan Yu De-Zhao Su Dan-Dan

Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect

Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, a series of hot carriers tests of irradiated 130 nm partially depleted silicon-on-insulator NMOSFETs is carried out in order to explore the HCI influence on the ionizing radiation damage. Some devices are irradiated by up to 3000 Gy before testing the hot carriers, while other devices experience hot carriers test only. All the devices we used in the experiments are fabricated by using a 130 nm partially depleted (PD) SOI technology. The devices each have a 6nm-thick gate oxide, 100 nm-thick silicon film, and 145 nm-thick buried oxide, with using shallow trench isolation (STI) for isolation scheme. The irradiation experiments are carried by 60Co- ray at the Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, with a dose rate of 0.8~Gy(Si)/s. During irradiation all the samples are biased at 3.3V, i.e., VGS=3.3V and other pins are grounded, and when the devices are irradiated respectively by total doses of 500, 1000, 2000 and 3000Gy(Si), we test the characteristic curves again. Then 168-hour room temperature anneal experiments are carried out for the irradiated devices, using the same biases under irradiation. The HCI stress condition is chosen by searching for the maximum substrate current. The cumulative stress time is 5000s, and the time intervals are 10, 100, 500, 1000 and 5000s respectively. After each stress interval, the device parameters are measured until stress time termination appears. Through the comparison of characteristic between pre-irradiated and unirradiated devices, we find that the total dose damage results in the enhanced effect of hot carriers: the substrate current value which characterizes the hot carrier effect (for SOI device are the body to the ground current) increases with the increase of total dose, as the pre-irradiated and unirradiated device do under the same conditions of hot carrier stress, the degradations of key electrical parameters are more obvious for the pre-irradiated one. In order to analyze the physical mechanism of the experimental phenomena, the wide channel device is tested too, we also analyze the phenomenon of the decrease of the substrate current of the wide channel device. From the contrasts of pre-irradiated and unirradiated devices, and narrow and wide channel device test results, we can obtain the following conclusions: SOI devices (especially the narrow channel device) with additional ionization irradiation field induced by ionizing radiation enhance the rate of injecting electrons into the silicon dioxide, and produce oxide trap charge and interface states, which leads to the fact that the channel carrier scattering becomes stronger, transfer characteristic curve of the device, output characteristic curve, transconductance curves and the related parameters of VT, GMmax, IDSAT degradation degree increase. So, when designing 130nm PD SOI NMOSFETs which are applied to the space environment, one should make a compromise between radiation resistance and HCI reliability.
      Corresponding author: Yu Xue-Feng, yuxf@ms.xjb.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475255).
    [1]

    Shen J B 1999 Missiles and Space Vehicles 211 55 (in Chinese) [沈剑波 1999 导弹与航天运载技术 211 55]

    [2]

    Lin D J 2004 Missiles and Space Vehicles 267 73 (in Chinese) [林德健 2004 导弹与航天运载技术 267 73]

    [3]

    Ning B X, Hu Z Y, Zhang Z X, Bi D W, Huang H X, Dai R F, Zhang Y W, Zou S C 2013 Acta Phys. Sin. 62 319 (in Chinese) [宁冰旭, 胡志远, 张正选, 毕大炜, 黄辉祥, 戴若凡, 张彦伟, 邹世昌 2013 物理学报 62 319]

    [4]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [5]

    Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522

    [6]

    Hao Y, Liu H X 2008 Micro-nano MOS Device Reliability and Failure Mechanism (Beijing: Science Press) p115, 148 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS器件可靠性与失效机理 (北京: 科学出版社)第115, 148页]

    [7]

    Cui J W, Yu X F, Ren D Y, Lu J 2012 Acta Phys. Sin. 61 026102 (in Chinese) [崔江维, 余学峰, 任迪远, 卢健 2012 物理学报 61 026102]

    [8]

    Silvestri M, Gerardin S, Paccagnella A, Faccio F, Gonella L, Pantano D, Re V, Manghisoni M, Ratti L, Ranieri A 2008 IEEE Trans. Nucl. Sci. 55 1960

    [9]

    Silvestri M, Gerardin S, Schrimpf R D, Fleetwood D M, Faccio F, Paccagnella A 2009 IEEE Trans. Nucl. Sci. 56 3244

    [10]

    Silvestri M, Gerardin S, Faccio F, Paccagnella A 2010 IEEE Trans. Nucl. Sci. 57 1842

    [11]

    Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technology and its Application (Beijing: Science Press) p142 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用(北京: 科学出版社)第142页]

    [12]

    Wu X, Lu W, Wang X, Xi S B, Guo Q, Li Y D 2013 Acta Phys. Sin. 62 136101 (in Chinese) [吴雪,陆妩,王信, 习善斌, 郭旗, 李豫东 2013 物理学报 62 136101]

    [13]

    Liang B, Cheng J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [14]

    Yu X F, Ai E K, Ren D Y, Zhang G Q, Lu W, Guo Q 2006 Res. Prog. SSE. 26 560 (in Chinese) [余学峰, 艾尔肯, 任迪远, 张国强, 陆妩, 郭旗 2008 固体电子学研究与进展 26 560]

    [15]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Beijing: Publishing House of Electronics Industry) pp111-118 (in Chinese) [刘恩科, 朱秉升, 罗晋升 2003 半导体物理学 (北京: 电子工业出版社) 第111-118页]

  • [1]

    Shen J B 1999 Missiles and Space Vehicles 211 55 (in Chinese) [沈剑波 1999 导弹与航天运载技术 211 55]

    [2]

    Lin D J 2004 Missiles and Space Vehicles 267 73 (in Chinese) [林德健 2004 导弹与航天运载技术 267 73]

    [3]

    Ning B X, Hu Z Y, Zhang Z X, Bi D W, Huang H X, Dai R F, Zhang Y W, Zou S C 2013 Acta Phys. Sin. 62 319 (in Chinese) [宁冰旭, 胡志远, 张正选, 毕大炜, 黄辉祥, 戴若凡, 张彦伟, 邹世昌 2013 物理学报 62 319]

    [4]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [5]

    Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522

    [6]

    Hao Y, Liu H X 2008 Micro-nano MOS Device Reliability and Failure Mechanism (Beijing: Science Press) p115, 148 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS器件可靠性与失效机理 (北京: 科学出版社)第115, 148页]

    [7]

    Cui J W, Yu X F, Ren D Y, Lu J 2012 Acta Phys. Sin. 61 026102 (in Chinese) [崔江维, 余学峰, 任迪远, 卢健 2012 物理学报 61 026102]

    [8]

    Silvestri M, Gerardin S, Paccagnella A, Faccio F, Gonella L, Pantano D, Re V, Manghisoni M, Ratti L, Ranieri A 2008 IEEE Trans. Nucl. Sci. 55 1960

    [9]

    Silvestri M, Gerardin S, Schrimpf R D, Fleetwood D M, Faccio F, Paccagnella A 2009 IEEE Trans. Nucl. Sci. 56 3244

    [10]

    Silvestri M, Gerardin S, Faccio F, Paccagnella A 2010 IEEE Trans. Nucl. Sci. 57 1842

    [11]

    Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technology and its Application (Beijing: Science Press) p142 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用(北京: 科学出版社)第142页]

    [12]

    Wu X, Lu W, Wang X, Xi S B, Guo Q, Li Y D 2013 Acta Phys. Sin. 62 136101 (in Chinese) [吴雪,陆妩,王信, 习善斌, 郭旗, 李豫东 2013 物理学报 62 136101]

    [13]

    Liang B, Cheng J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [14]

    Yu X F, Ai E K, Ren D Y, Zhang G Q, Lu W, Guo Q 2006 Res. Prog. SSE. 26 560 (in Chinese) [余学峰, 艾尔肯, 任迪远, 张国强, 陆妩, 郭旗 2008 固体电子学研究与进展 26 560]

    [15]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Beijing: Publishing House of Electronics Industry) pp111-118 (in Chinese) [刘恩科, 朱秉升, 罗晋升 2003 半导体物理学 (北京: 电子工业出版社) 第111-118页]

  • [1] Liu Yuan, Chen Hai-Bo, He Yu-Juan, Wang Xin, Yue Long, En Yun-Fei, Liu Mo-Han. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Physica Sinica, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [2] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [3] Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min. Progress of radiation effects of silicon photonics devices. Acta Physica Sinica, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [4] Zhao Jin-Yu, Yang Jian-Qun, Dong Lei, Li Xing-Ji. Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors. Acta Physica Sinica, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [5] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [6] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [7] Qin Chen, Yu Hui, Ye Qiao-Bo, Wei Huan, Jiang Xiao-Qing. An improved Mach-Zehnder acousto-optic modulator on a silicon-on-insulator platform. Acta Physica Sinica, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [8] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [9] Yang Jian-Qun, Dong Lei, Liu Chao-Ming, Li Xing-Ji, Xu Peng-Fei. Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Physica Sinica, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [10] You Hai-Long, Lan Jian-Chun, Fan Ju-Ping, Jia Xin-Zhang, Zha Wei. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [11] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong. A model of hot carrier gate current for uniaxially strained Si NMOSFET. Acta Physica Sinica, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [12] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [13] Liu Yu-An, Du Lei, Bao Jun-Lin. Research on correlation of 1/fγ noise and hot carrier degradation in metal oxide semiconductor field effect transistor. Acta Physica Sinica, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
    [14] Yang Biao, Li Zhi-Yong, Xiao Xi, Nemkova Anastasia, Yu Jin-Zhong, Yu Yu-De. The progress of silicon-based grating couplers. Acta Physica Sinica, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [15] Lin Jian-Xiao, Wu Jiu-Hui, Liu Ai-Qun, Chen Zhe, Lei Hao. A nano-silicon-photonic switch driven by an optical gradient force. Acta Physica Sinica, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [16] Li Xing-Ji, Liu Chao-Ming, Sun Zhong-Liang, Lan Mu-Jie, Xiao Li-Yi, He Shi-Yu. Radiation damage induced by various particles on CC4013 devices. Acta Physica Sinica, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [17] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [18] He Bao-Ping, Yao Zhi-Bin. Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment. Acta Physica Sinica, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [19] Zhang Zhi-Yong, Yan Jun-Feng, Zhai Chun-Xue, Yang Yan-Ning, Zhang Fu-Chun, Zhang Wei-Hu. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [20] Liu Xiang-Yu, Hu Hui-Yong, Zhang He-Ming, Xuan Rong-Xi, Song Jian-Jun, Shu Bin, Wang Bin, Wang Meng. Study on the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor with polycrystalline silicon germanium gate threshold voltage. Acta Physica Sinica, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
  • Citation:
Metrics
  • Abstract views:  597
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2015
  • Accepted Date:  04 February 2016
  • Published Online:  05 May 2016

Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect

    Corresponding author: Yu Xue-Feng, yuxf@ms.xjb.ac.cn
  • 1. Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;
  • 2. Xinjiang Key Laboratory of Electric Information Materials and Devices, Urumuqi 830011, China;
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11475255).

Abstract: In this paper, a series of hot carriers tests of irradiated 130 nm partially depleted silicon-on-insulator NMOSFETs is carried out in order to explore the HCI influence on the ionizing radiation damage. Some devices are irradiated by up to 3000 Gy before testing the hot carriers, while other devices experience hot carriers test only. All the devices we used in the experiments are fabricated by using a 130 nm partially depleted (PD) SOI technology. The devices each have a 6nm-thick gate oxide, 100 nm-thick silicon film, and 145 nm-thick buried oxide, with using shallow trench isolation (STI) for isolation scheme. The irradiation experiments are carried by 60Co- ray at the Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, with a dose rate of 0.8~Gy(Si)/s. During irradiation all the samples are biased at 3.3V, i.e., VGS=3.3V and other pins are grounded, and when the devices are irradiated respectively by total doses of 500, 1000, 2000 and 3000Gy(Si), we test the characteristic curves again. Then 168-hour room temperature anneal experiments are carried out for the irradiated devices, using the same biases under irradiation. The HCI stress condition is chosen by searching for the maximum substrate current. The cumulative stress time is 5000s, and the time intervals are 10, 100, 500, 1000 and 5000s respectively. After each stress interval, the device parameters are measured until stress time termination appears. Through the comparison of characteristic between pre-irradiated and unirradiated devices, we find that the total dose damage results in the enhanced effect of hot carriers: the substrate current value which characterizes the hot carrier effect (for SOI device are the body to the ground current) increases with the increase of total dose, as the pre-irradiated and unirradiated device do under the same conditions of hot carrier stress, the degradations of key electrical parameters are more obvious for the pre-irradiated one. In order to analyze the physical mechanism of the experimental phenomena, the wide channel device is tested too, we also analyze the phenomenon of the decrease of the substrate current of the wide channel device. From the contrasts of pre-irradiated and unirradiated devices, and narrow and wide channel device test results, we can obtain the following conclusions: SOI devices (especially the narrow channel device) with additional ionization irradiation field induced by ionizing radiation enhance the rate of injecting electrons into the silicon dioxide, and produce oxide trap charge and interface states, which leads to the fact that the channel carrier scattering becomes stronger, transfer characteristic curve of the device, output characteristic curve, transconductance curves and the related parameters of VT, GMmax, IDSAT degradation degree increase. So, when designing 130nm PD SOI NMOSFETs which are applied to the space environment, one should make a compromise between radiation resistance and HCI reliability.

Reference (15)

Catalog

    /

    返回文章
    返回