Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Observation of particle manipulation with axial plane optical microscopy

An Sha Peng Tong Zhou Xing Han Guo-Xia Huang Zhang-Xiang Yu Xiang-Hua Cai Ya-Nan Yao Bao-Li Zhang Peng

Observation of particle manipulation with axial plane optical microscopy

An Sha, Peng Tong, Zhou Xing, Han Guo-Xia, Huang Zhang-Xiang, Yu Xiang-Hua, Cai Ya-Nan, Yao Bao-Li, Zhang Peng
PDF
Get Citation
  • Optical micromanipulation of particles based on the optical trapping effect induced by the interaction between light and particles has been successfully applied to many interdisciplinary fields including biomedicine and material sciences. When particles are trapped in three dimensions, the conventional wide-field optical microscopy can only monitor the movement of the trapped particles in a certain transverse plane. The ability to observe the particle movement along light trajectories is limited. Recently, a novel method named axial plane optical microscopy(APOM) has been developed to directly image the axial plane that is parallel to the optical axis of an objective lens. The APOM observes the axial plane by converting the axial information of a sample into that of a transverse plane by using a 45°-tilted mirror. In this paper, we propose and demonstrate that the APOM serves as an effective tool for observing the axial movement of particles in optical tweezers. By combining with a conventional wide-field optical microscopy, we show that both transverse and axial information can be acquired simultaneously for the optical micromanipulation. As in our first experimental demonstration, we observe two particles which are trapped and aligned along the optical axis. From the transverse image, only one particle is observable, and it is difficult to obtain the information along the axial direction. However, in the axial plane imaging, the longitudinal dipolar structure formed by the two particles is clearly visible. This clearly demonstrates the APOM imaging capability along the axial axis. The numerically simulations on the trapping focal spot against the position of a collimating lens agree well with our experimental APOM results. Furthermore, we directly observe the dynamic capture process of a single trapped particle in transverse plane by conventional wide-field optical microscopy as well in axial plane by the APOM, and can obtain the 3D information rapidly and simultaneously. We point out that the observable axial dynamic range is about 30 μm. Taking advantages of no requirement of scanning and data reconstruction, the APOM has potential applications in many fields, including optical trapping with novel beams and 3D imaging of thick biological specimens.
      Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn;pengzhang@opt.ac.cn ; Zhang Peng, yaobl@opt.ac.cn;pengzhang@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11574389, 81427802).
    [1]

    Ashkin A, Dziedzic J, Bjorkholm J 1986 Opt. Lett. 11 288

    [2]

    Durnin J, Miceli J, Eberly H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McQueen C A, Arlt J, Dholakia K 1999 Am. J. Phys. 67 912

    [4]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [5]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [6]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [7]

    Yu X H, Yao B L, Lei M, Yan S H, Yang Y L, Li R Z, Cai Y N 2015 Acta Phys. Sin. 64 244203 (in Chinese)[于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠2015物理学报64 244203]

    [8]

    Zhang P, Hu Y, Li T C, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [9]

    Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z G 2013 Opt. Lett. 38 498

    [10]

    Yu X H, Li R Z, Yan S H, Yao B L, Gao P, Han G X, Lei M M 2016 Appl. Opt. 55 3090

    [11]

    Zhang Z, Zhang P, Mills M, Chen Z G, Christodoulides D N, Liu J J 2013 Chin. Opt. Lett. 11 033502

    [12]

    Schley R, Kaminer I, Greenfield E, Bekenstein R, Lumer Y, Segev M 2014 Nat. Commun. 5 5189

    [13]

    Abbe E 1884 J. Royal Microscop. Soc. 4 20

    [14]

    Murayam M, Pérez-Garci E, NevianT, Bock T, Senn W, Larkum M E 2009 Nature 457 1137

    [15]

    Dunsby C 2008 Opt. Express 16 20306

    [16]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy(New York:Springer US) pp20-42

    [17]

    Conchello J A, Lichtman J W 2005 Nat. Methods 2 920

    [18]

    Lin H M, Shao Y H, Qu J L, Yin J, Chen S P, Niu H B 2008 Acta Phys. Sin. 57 7641 (in Chinese)[林浩铭, 邵永红, 屈军乐, 尹君, 陈思平, 牛憨笨2008物理学报57 7641]

    [19]

    Kim J, Li T C, Wang Y, Zhang X 2014 Opt. Express 22 11140

    [20]

    Li T C, Ota S, Kim J, Wong Z J, Wang Y, Yin X B, Zhang X 2014 Sci. Rep. 4 7253

    [21]

    Shvedov V, Davoyan A R, Hnatovsky C, Engheta N, Krolikowski W 2014 Nat. Photon. 8 846

    [22]

    Sukhov S, Dogariu A 2011 Phys. Rev. Lett. 107 203602

    [23]

    Kajorndejnukul V, Ding W, Sukhov S, Dogariu A 2013 Nat. Photon. 7 787

    [24]

    Dogariu A, Sukhov S, Sáenz J 2013 Acta Phys. Sin. 62 100701 (in Chinese)[任洪亮2013物理学报62 100701]

  • [1]

    Ashkin A, Dziedzic J, Bjorkholm J 1986 Opt. Lett. 11 288

    [2]

    Durnin J, Miceli J, Eberly H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McQueen C A, Arlt J, Dholakia K 1999 Am. J. Phys. 67 912

    [4]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [5]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [6]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [7]

    Yu X H, Yao B L, Lei M, Yan S H, Yang Y L, Li R Z, Cai Y N 2015 Acta Phys. Sin. 64 244203 (in Chinese)[于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠2015物理学报64 244203]

    [8]

    Zhang P, Hu Y, Li T C, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [9]

    Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z G 2013 Opt. Lett. 38 498

    [10]

    Yu X H, Li R Z, Yan S H, Yao B L, Gao P, Han G X, Lei M M 2016 Appl. Opt. 55 3090

    [11]

    Zhang Z, Zhang P, Mills M, Chen Z G, Christodoulides D N, Liu J J 2013 Chin. Opt. Lett. 11 033502

    [12]

    Schley R, Kaminer I, Greenfield E, Bekenstein R, Lumer Y, Segev M 2014 Nat. Commun. 5 5189

    [13]

    Abbe E 1884 J. Royal Microscop. Soc. 4 20

    [14]

    Murayam M, Pérez-Garci E, NevianT, Bock T, Senn W, Larkum M E 2009 Nature 457 1137

    [15]

    Dunsby C 2008 Opt. Express 16 20306

    [16]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy(New York:Springer US) pp20-42

    [17]

    Conchello J A, Lichtman J W 2005 Nat. Methods 2 920

    [18]

    Lin H M, Shao Y H, Qu J L, Yin J, Chen S P, Niu H B 2008 Acta Phys. Sin. 57 7641 (in Chinese)[林浩铭, 邵永红, 屈军乐, 尹君, 陈思平, 牛憨笨2008物理学报57 7641]

    [19]

    Kim J, Li T C, Wang Y, Zhang X 2014 Opt. Express 22 11140

    [20]

    Li T C, Ota S, Kim J, Wong Z J, Wang Y, Yin X B, Zhang X 2014 Sci. Rep. 4 7253

    [21]

    Shvedov V, Davoyan A R, Hnatovsky C, Engheta N, Krolikowski W 2014 Nat. Photon. 8 846

    [22]

    Sukhov S, Dogariu A 2011 Phys. Rev. Lett. 107 203602

    [23]

    Kajorndejnukul V, Ding W, Sukhov S, Dogariu A 2013 Nat. Photon. 7 787

    [24]

    Dogariu A, Sukhov S, Sáenz J 2013 Acta Phys. Sin. 62 100701 (in Chinese)[任洪亮2013物理学报62 100701]

  • [1] Cheng Ke, Zhong Xian-Qiong, Xiang An-Ping. Optical trapping of metallic Rayleigh particles by using coherently and incoherently combined beams. Acta Physica Sinica, 2012, 61(7): 074202. doi: 10.7498/aps.61.074202
    [2] Wang Yue, Liang Yan-Sheng, Yan Shao-Hui, Cao Zhi-Liang, Cai Ya-Nan, Zhang Yan, Yao Bao-Li, Lei Ming. Axial multi-particle trapping and real-time direct observation. Acta Physica Sinica, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [3] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [4] Wang Shu-Ying, Zhang Hai-Jun, Zhang Dong-Xian. Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses. Acta Physica Sinica, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [5] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [6] Xiong Zhi_Ming, Zhang Qing_Chuan, Wu Xiao_Ping, Guo Zhe_Ying, Dong Feng_Liang, Miao Zheng_Yu, Chen Da_Peng, Li Chao_Bo. Optical-readout micro-cantilever array IR imaging system and performance analysis. Acta Physica Sinica, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [7] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [8] Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou. Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum. Acta Physica Sinica, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [9] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [10] Zhou Rui, Wu Meng-Xue, Shen Fei, Hong Ming-Hui. Super-resolution microscopic effect of microsphere based on the near-field optics. Acta Physica Sinica, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [11] Yang Ya-Liang, Ding Zhi-Hua, Wang Kai, Wu Ling, Wu Lan. Development of full-field optical coherence tomography system. Acta Physica Sinica, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [12] Pang Wu-Bin, Cen Zhao-Feng, Li Xiao-Tong, Qian Wei, Shang Hong-Bo, Xu Wei-Cai. The effect of polarization light on optical imaging system. Acta Physica Sinica, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [13] Yao Yin-Ping, Wan Ren-Gang, Xue Yu-Lang, Zhang Shi-Wei, Zhang Tong-Yi. Positive-negative nonlocal lensless imaging based on statistical optics. Acta Physica Sinica, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [14] Feng Chi, Chang Jun, Yang Hai-Bo. Design of dually foveated imaging optical system. Acta Physica Sinica, 2015, 64(3): 034201. doi: 10.7498/aps.64.034201
    [15] Zhang Hang. The optical tomography of tissues by a δ sound field. Acta Physica Sinica, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [16] Wu Jian-Xiong, Cheng Teng, Zhang Qing-Chuan, Gao Jie, Wu Xiao-Ping. Optical detection sensitivity of area light source in optical read-out IR imaging. Acta Physica Sinica, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [17] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [18] Zhou Li-Wei, Li Yuan, Monastyrski M. A., Schelev M. Y., Zhang Zhi-Quan. Theory of temporal aberrations for electron optical imaging systems by direct integral method. Acta Physica Sinica, 2005, 54(8): 3591-3596. doi: 10.7498/aps.54.3591
    [19] Liu Han-Chen, Tang Yuan-He, Xie Guang-Yong, Shao Jian-Bin, Ma Qi, Liu Hui-Ping, Ning Hui, Yang Yu, Yan Cheng-Hai. Study of the interface optical property of bubbles in water based on PIV. Acta Physica Sinica, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [20] Zhang Zhi-Quan, Zhang Yi-Fei, Zhou Li-Wei, Gong Hui. Imaging electron-optics and spatial-temporal aberrations for a bi-electrode spherical concentric system with electrostatic focusing. Acta Physica Sinica, 2010, 59(8): 5450-5458. doi: 10.7498/aps.59.5450
  • Citation:
Metrics
  • Abstract views:  329
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2016
  • Accepted Date:  06 September 2016
  • Published Online:  05 January 2017

Observation of particle manipulation with axial plane optical microscopy

    Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn;pengzhang@opt.ac.cn
    Corresponding author: Zhang Peng, yaobl@opt.ac.cn;pengzhang@opt.ac.cn
  • 1. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China(Grant Nos. 11574389, 81427802).

Abstract: Optical micromanipulation of particles based on the optical trapping effect induced by the interaction between light and particles has been successfully applied to many interdisciplinary fields including biomedicine and material sciences. When particles are trapped in three dimensions, the conventional wide-field optical microscopy can only monitor the movement of the trapped particles in a certain transverse plane. The ability to observe the particle movement along light trajectories is limited. Recently, a novel method named axial plane optical microscopy(APOM) has been developed to directly image the axial plane that is parallel to the optical axis of an objective lens. The APOM observes the axial plane by converting the axial information of a sample into that of a transverse plane by using a 45°-tilted mirror. In this paper, we propose and demonstrate that the APOM serves as an effective tool for observing the axial movement of particles in optical tweezers. By combining with a conventional wide-field optical microscopy, we show that both transverse and axial information can be acquired simultaneously for the optical micromanipulation. As in our first experimental demonstration, we observe two particles which are trapped and aligned along the optical axis. From the transverse image, only one particle is observable, and it is difficult to obtain the information along the axial direction. However, in the axial plane imaging, the longitudinal dipolar structure formed by the two particles is clearly visible. This clearly demonstrates the APOM imaging capability along the axial axis. The numerically simulations on the trapping focal spot against the position of a collimating lens agree well with our experimental APOM results. Furthermore, we directly observe the dynamic capture process of a single trapped particle in transverse plane by conventional wide-field optical microscopy as well in axial plane by the APOM, and can obtain the 3D information rapidly and simultaneously. We point out that the observable axial dynamic range is about 30 μm. Taking advantages of no requirement of scanning and data reconstruction, the APOM has potential applications in many fields, including optical trapping with novel beams and 3D imaging of thick biological specimens.

Reference (24)

Catalog

    /

    返回文章
    返回