Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of absorption spectrum around 1.572 μm

Shao Jun-Yi Lin Zhao-Xiang Liu Lin-Mei Gong Wei

Measurement of absorption spectrum around 1.572 μm

Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei
PDF
Get Citation
  • Differential absorption lidar (DIAL) is widely accepted as a most promising remote sensing technique for measuring the atmospheric CO2, and has been built in many countries to study the global climate change and carbon cycle. However, the imperfect information about CO2 spectrum leads to evident errors in estimating some parameters (such as the absorption cross sections, the broadening coefficients, the optical depth, etc.) which are the critical parameters in retrieving processes of a DIAL, and will eventually result in unacceptable errors of XCO2 retrievals. Coping with that problem, a self-built constant temperature differential absorption spectroscopy system has been set up which can be used to accurately measure the absorption spectrum of carbon dioxide in the band of 1.57 μm.#br#On that basis, the absorption spectra of the pure carbon dioxide are measured respectively at the temperatures from 230 K to 320 K and the pressures from 20 kPa to 100 kPa by the highprecision oscilloscope and wavelength meter. A series of optical depths at absorption peak is respectively calculated at different temperatures and the results show that the optical depth linearly and monotonically changes while the temperature increases from 230 K to 320 K. At the same time, the relations between the corresponding absorption cross sections and temperature are analyzed, showing that the absorption cross sections first increases and then decreases with temperature increasing. The self-broadening coefficients are inferred from the spectral data at the same temperature and different pressures, and the temperature-dependent exponent is calculated. Furthermore, the air-broadening coefficients are calculated by carbon dioxide absorption spectrum data from different mixing ratios and its temperature-dependent exponent is obtained. The temperature-dependent exponent of self-broadening coefficient is 0.644 and the temperature-dependent exponent of air-broadening coefficient is 0.764, which are almost the same as the data in the high-resolution transmission molecular absorption database (HITRAN). The numerical calculation formulae of optical depth and absorption cross section are verified through these results.#br#Those parameters supplement the widely-used HITRAN database. Moreover, quantitative analysis is conducted to explore the influences of temperature and pressure on CO2 spectrum, thereby establishing a function for modeling the differential absorption optical depth and the absorption cross-section. The above results have already been used in China's CO2-DIAL and lay a foundation of accurate retrieval. It is believed that other similar CO2-DIAL of which operating wavelength is around 1.572 μm would also benefit from those newly measured parameters.
      Corresponding author: Lin Zhao-Xiang, lin_zhaox@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41127901).
    [1]

    Imaki M, Kameyama S, Hirano Y, Ueno S, Sakaizawa D, Kawakami S, Nakajima M 2009 Opt. Lett. 34 10

    [2]

    Amediek, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B 92 295

    [3]

    Amediek A, Fix A, Ehret G, Caron J, Dyrand Y 2009 Atmosph. Measur. Tech. 2 755

    [4]

    Sakaizawa D, Kawakami S, Nakajima M, Sawa Y, Matsueda H 2010 J. Appl. Remote Sens. 4 1043548

    [5]

    Ambricof P F, Amodeo A, Girolamo P DI, Spinelli N 2000 Appl. Opt. 39 366847

    [6]

    Ma X, Lin H, Ma Y Y, Gong W 2013 Acta Opt. Sin. 32 17 (in Chinese) [马昕, 林宏, 马盈盈, 龚威 2013 光学学报 32 17]

    [7]

    Ma X, Gong W, Ma Y Y, Fu D W, Han G, Xiang C Z 2015 Acta Phys. Sin. 64 154251 (in Chinese) [马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志 2015 物理学报 64 154251]

    [8]

    Han G, Gong W, Ma X, Xiang C Z, Liang A L, Deng Y X 2015 Acta Phys. Sin. 64 244206 (in Chinese) [韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新 2015 物理学报 64 244206]

    [9]

    Gong W, Han G, Ma X, Lin H 2013 Opt. Commun. 305 180

    [10]

    Han G, Gong W, Lin H, Ma X, Xiang C 2014 Appl. Phys. B 117 104

    [11]

    Gong W, Ma X, Dong Y, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [12]

    Han G, Lin H, Ma X, Xiang Z 2014 IEEE Trans. Geosci. Remote Sens. 53 3221

    [13]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [14]

    Johannes B, Tommaso S, Daniele R, Marco M, Alain C, Samir K 2015 J. Chem. Phys. 142 191103

    [15]

    Ivascu I R, Matei C E, Patachia M, Bratu A M, Dumitras D C 2015 Rom. J. Phys. 60 1212

    [16]

    Klimeshina T E, Petrova T M, Rodimova O B, Solodov A A, Solodov A M 2015 Atmos. Ocean. Opt. 28 387

    [17]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, B-oudon V, Brown L 2013 J. Quant. Spectrosc. Radiat. 130 4

    [18]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Radiat. 110 533

    [19]

    Bragg S L, Lawton S A, Wiswall C E 1985 Opt. Lett. 10 321

    [20]

    Joly L, Marnas F, Gibert F, Bruneau D, Grouidez B, Pierre H F, Durrya G, Dumelie N, Parvitte B, Zeninari V 2009 Appl. Opt. 48 295475

    [21]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M 2008 J. Appl. Phys. 47 1325

    [22]

    Li J S, Durrya G, Cousin J, Joly L, Parvitte B, Flamant P H, Gibert F, Zeninari V 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1411

    [23]

    Joly L, Gibert F, Grouiez B, Grossela A, Parvittea B, Durrya G, Zéninaria V 2008 J. Quant. Spectrosc. Radiat. Transfer 109 426

    [24]

    Lu T X, Lu Z Q 2006 The Theory and Application of Laser Spectroscopy (Hefei: University of Science and Technology of China Press)p133 (in Chinese) [陆同兴, 路秩群 2006 激光光谱技术原理及应用(合肥:中国科学技术大学出版社) 第133页

    [25]

    Bragg S L, Kelley J D 1987 Appl. Opt. 26 506

    [26]

    Kielkopf J F 1973 J. Opt. Soc. Am. 63 987

    [27]

    Zhou J, Zhang S L, Chen X H 2007 Spectrosc. Spect. Anal. 27 71259 (in Chinese) [周洁, 张时良, 陈晓虎 2007 光谱学光谱分析 27 71259]

  • [1]

    Imaki M, Kameyama S, Hirano Y, Ueno S, Sakaizawa D, Kawakami S, Nakajima M 2009 Opt. Lett. 34 10

    [2]

    Amediek, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B 92 295

    [3]

    Amediek A, Fix A, Ehret G, Caron J, Dyrand Y 2009 Atmosph. Measur. Tech. 2 755

    [4]

    Sakaizawa D, Kawakami S, Nakajima M, Sawa Y, Matsueda H 2010 J. Appl. Remote Sens. 4 1043548

    [5]

    Ambricof P F, Amodeo A, Girolamo P DI, Spinelli N 2000 Appl. Opt. 39 366847

    [6]

    Ma X, Lin H, Ma Y Y, Gong W 2013 Acta Opt. Sin. 32 17 (in Chinese) [马昕, 林宏, 马盈盈, 龚威 2013 光学学报 32 17]

    [7]

    Ma X, Gong W, Ma Y Y, Fu D W, Han G, Xiang C Z 2015 Acta Phys. Sin. 64 154251 (in Chinese) [马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志 2015 物理学报 64 154251]

    [8]

    Han G, Gong W, Ma X, Xiang C Z, Liang A L, Deng Y X 2015 Acta Phys. Sin. 64 244206 (in Chinese) [韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新 2015 物理学报 64 244206]

    [9]

    Gong W, Han G, Ma X, Lin H 2013 Opt. Commun. 305 180

    [10]

    Han G, Gong W, Lin H, Ma X, Xiang C 2014 Appl. Phys. B 117 104

    [11]

    Gong W, Ma X, Dong Y, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [12]

    Han G, Lin H, Ma X, Xiang Z 2014 IEEE Trans. Geosci. Remote Sens. 53 3221

    [13]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [14]

    Johannes B, Tommaso S, Daniele R, Marco M, Alain C, Samir K 2015 J. Chem. Phys. 142 191103

    [15]

    Ivascu I R, Matei C E, Patachia M, Bratu A M, Dumitras D C 2015 Rom. J. Phys. 60 1212

    [16]

    Klimeshina T E, Petrova T M, Rodimova O B, Solodov A A, Solodov A M 2015 Atmos. Ocean. Opt. 28 387

    [17]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, B-oudon V, Brown L 2013 J. Quant. Spectrosc. Radiat. 130 4

    [18]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Radiat. 110 533

    [19]

    Bragg S L, Lawton S A, Wiswall C E 1985 Opt. Lett. 10 321

    [20]

    Joly L, Marnas F, Gibert F, Bruneau D, Grouidez B, Pierre H F, Durrya G, Dumelie N, Parvitte B, Zeninari V 2009 Appl. Opt. 48 295475

    [21]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M 2008 J. Appl. Phys. 47 1325

    [22]

    Li J S, Durrya G, Cousin J, Joly L, Parvitte B, Flamant P H, Gibert F, Zeninari V 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1411

    [23]

    Joly L, Gibert F, Grouiez B, Grossela A, Parvittea B, Durrya G, Zéninaria V 2008 J. Quant. Spectrosc. Radiat. Transfer 109 426

    [24]

    Lu T X, Lu Z Q 2006 The Theory and Application of Laser Spectroscopy (Hefei: University of Science and Technology of China Press)p133 (in Chinese) [陆同兴, 路秩群 2006 激光光谱技术原理及应用(合肥:中国科学技术大学出版社) 第133页

    [25]

    Bragg S L, Kelley J D 1987 Appl. Opt. 26 506

    [26]

    Kielkopf J F 1973 J. Opt. Soc. Am. 63 987

    [27]

    Zhou J, Zhang S L, Chen X H 2007 Spectrosc. Spect. Anal. 27 71259 (in Chinese) [周洁, 张时良, 陈晓虎 2007 光谱学光谱分析 27 71259]

  • [1] Zhu Xiang-Fei, Lin Zhao-Xiang, Liu Lin-Mei, Shao Jun-Yi, Gong Wei. Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar. Acta Physica Sinica, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [2] Zhang Yin-Chao, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling, Hong Guang-Lie, Zhao Yue-Feng. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [3] Zhang Yin-Chao, Zhang Gai-Xia, Zhao Yue-Feng, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [4] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [5] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] Wang Yang, Xie Pin-Hua, Li Ang, Zeng Yi, Xu Jin, Si Fu-Qi. Measurement of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy in Hefei city. Acta Physica Sinica, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [7] Chen Liang-Fu, Su Lin, Liu Hou-Tong. Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar. Acta Physica Sinica, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [8] Ling Liu-Yi, Qin Min, Xie Pin-Hua, Hu Ren-Zhi, Fang Wu, Jiang Yu, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED optical source. Acta Physica Sinica, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [9] Hu Shun-Xing, Cao Kai-Fa, Wang Ying-Jian, Wang Min, Fang Xin, Wang Shao-Lin, Zhao Pei-Tao, Fan Guang-Qiang. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [10] Shu Zhi-Feng, Shen Fa-Hua, Wang Zhong-Chun, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [11] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [12] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [13] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [14] Di Hui-Ge, Hua Deng-Xin, Wang Yu-Feng, Yan Qing. Investigation on the correction of the Mie scattering lidar's overlapping factor and echo signals over the total detection range. Acta Physica Sinica, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [15] Rao Zhi-Min, Hua Deng-Xin, He Ting-Yao, Le Jing. Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements. Acta Physica Sinica, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [16] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [17] Sun Guo-Dong, Qin Lai-An, Zhang Si-Long, He Feng, Tan Feng-Fu, Jing Xu, Hou Zai-Hong. A new method of measuring boundary value of atmospheric extinction coefficient. Acta Physica Sinica, 2018, 67(5): 054205. doi: 10.7498/aps.67.20172008
    [18] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [19] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [20] Shao Yun, Guo Guan-Jun. Rough surfaces induced speckle effects on detection performance of pulsed laser radar. Acta Physica Sinica, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
  • Citation:
Metrics
  • Abstract views:  203
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2016
  • Accepted Date:  17 March 2017
  • Published Online:  20 May 2017

Measurement of absorption spectrum around 1.572 μm

    Corresponding author: Lin Zhao-Xiang, lin_zhaox@126.com
  • 1. College of Electronics and Information Engineering, South-Central University for Nationalities, Wuhan 430074, China;
  • 2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 41127901).

Abstract: Differential absorption lidar (DIAL) is widely accepted as a most promising remote sensing technique for measuring the atmospheric CO2, and has been built in many countries to study the global climate change and carbon cycle. However, the imperfect information about CO2 spectrum leads to evident errors in estimating some parameters (such as the absorption cross sections, the broadening coefficients, the optical depth, etc.) which are the critical parameters in retrieving processes of a DIAL, and will eventually result in unacceptable errors of XCO2 retrievals. Coping with that problem, a self-built constant temperature differential absorption spectroscopy system has been set up which can be used to accurately measure the absorption spectrum of carbon dioxide in the band of 1.57 μm.#br#On that basis, the absorption spectra of the pure carbon dioxide are measured respectively at the temperatures from 230 K to 320 K and the pressures from 20 kPa to 100 kPa by the highprecision oscilloscope and wavelength meter. A series of optical depths at absorption peak is respectively calculated at different temperatures and the results show that the optical depth linearly and monotonically changes while the temperature increases from 230 K to 320 K. At the same time, the relations between the corresponding absorption cross sections and temperature are analyzed, showing that the absorption cross sections first increases and then decreases with temperature increasing. The self-broadening coefficients are inferred from the spectral data at the same temperature and different pressures, and the temperature-dependent exponent is calculated. Furthermore, the air-broadening coefficients are calculated by carbon dioxide absorption spectrum data from different mixing ratios and its temperature-dependent exponent is obtained. The temperature-dependent exponent of self-broadening coefficient is 0.644 and the temperature-dependent exponent of air-broadening coefficient is 0.764, which are almost the same as the data in the high-resolution transmission molecular absorption database (HITRAN). The numerical calculation formulae of optical depth and absorption cross section are verified through these results.#br#Those parameters supplement the widely-used HITRAN database. Moreover, quantitative analysis is conducted to explore the influences of temperature and pressure on CO2 spectrum, thereby establishing a function for modeling the differential absorption optical depth and the absorption cross-section. The above results have already been used in China's CO2-DIAL and lay a foundation of accurate retrieval. It is believed that other similar CO2-DIAL of which operating wavelength is around 1.572 μm would also benefit from those newly measured parameters.

Reference (27)

Catalog

    /

    返回文章
    返回