Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber

Wang Xiao-Fa Zhang Jun-Hong Gao Zi-Ye Xia Guang-Qiong Wu Zheng-Mao

Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber

Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Tm-doped mode-locked pulsed fiber lasers, which are known for their wide applications in optical communication, laser medical system and special material processing, have attracted considerable interest as novel laser sources. Up to now, many reported Tm-doped mode-locked fiber lasers focused on emitting picosecond or femtosecond pulses at a few megahertz (MHz) repetition rate. Actually, due to the strong chirp, large pulse width, low peak power and little nonlinear phase accumulation characteristics in the process of power amplifier, nanosecond mode-locked fiber laser is a representative of ideal seed source in the chirped pulse amplification (CPA) system. However, nanosecond mode-locked fiber lasers are generally implemented with the kilometerlong cavity length, corresponding to the fundamental repetition rate of hundreds of kilohertz. Usually, fiber lasers with such a low repetition rate are not desirable in applications of laser material processing, nor medical treatment nor scientific researches. In this paper, we report a nanosecond mode-locked Tm-doped fiber laser with MHz repetition rate based on graphene saturable absorber (SA). As the SA, graphene has excellent optical properties, such as optical visualization, high transparency, ultra-fast relaxation time and nonlinear absorption. It is not limited by the band gap either because of its zero-band-gap structure. Therefore, graphene can be used as fast SA, with wide spectral range operated. Generally, graphene suitable for mode-locked fiber lasers can be produced by using chemical vapor deposition (CVD), liquid phase exfoliation and mechanical exfoliation. Since the CVD technique can obtain high-quality graphene with precisely controlled number of layers, it is always the first choice for the manufacture of graphene. In our work, monolayer graphene layers are grown on copper foils by CVD, and then transferred onto the end face of the fiber connector three times. Meanwhile, a narrow-band fiber Bragg grating is used to constrain longitudinal modes of the laser intra-cavity. By simply adjusting the pump power and the polarization angle of polarization controller, stable 2 μm nanosecond mode-locked pulses are obtained in a wide range from 3.8 ns to 94.3 ns at 3.8 MHz repetition rate. We believe that the results obtained will be helpful for investigating the CPA system at 2 μm.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304409, 61475127, 61575163), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013jcyjA4004), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing, China (Grant No. CSTC2015zdcy-ztzx40003).
    [1]

    Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616

    [2]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [3]

    Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102

    [4]

    Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7

    [5]

    Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864

    [6]

    Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369

    [7]

    Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7

    [8]

    Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809

    [9]

    Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260

    [10]

    Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001

    [11]

    Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417

    [12]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [13]

    Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077

    [14]

    Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077

    [15]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797

    [16]

    Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339

    [18]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119

    [19]

    Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621

    [20]

    Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108

    [21]

    Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334

    [22]

    Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466

    [23]

    Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936

    [24]

    Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024

    [25]

    Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204

    [26]

    Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147

    [27]

    Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447

    [28]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [29]

    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401

    [30]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238

    [31]

    Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539

    [32]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105

    [33]

    Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352

    [34]

    Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526

  • [1]

    Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616

    [2]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [3]

    Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102

    [4]

    Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7

    [5]

    Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864

    [6]

    Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369

    [7]

    Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7

    [8]

    Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809

    [9]

    Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260

    [10]

    Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001

    [11]

    Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417

    [12]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [13]

    Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077

    [14]

    Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077

    [15]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797

    [16]

    Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339

    [18]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119

    [19]

    Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621

    [20]

    Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108

    [21]

    Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334

    [22]

    Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466

    [23]

    Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936

    [24]

    Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024

    [25]

    Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204

    [26]

    Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147

    [27]

    Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447

    [28]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [29]

    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401

    [30]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238

    [31]

    Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539

    [32]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105

    [33]

    Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352

    [34]

    Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526

  • [1] Zhou Ren-Lai, Ju You-Lun, Yang Chao, Wang Wei, Wang Yue-Zhu. A methode of estimating the reflectivity and refractive-index modulation of double-cladding large core fiber Bragg grating. Acta Physica Sinica, 2012, 61(24): 244205. doi: 10.7498/aps.61.244205
    [2] Fu Kuan, Xu Zhong-Wei, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb3+-doped fiber laser with all-normal dispersion cavity. Acta Physica Sinica, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [3] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [4] Feng Qiu-Yan, Yao Bai-Cheng, Zhou Jin-Hao, Xia Han-Ding, Fan Meng-Qiu, Zhang Li, Wu Yu, Rao Yun-Jiang. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure. Acta Physica Sinica, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
    [5] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [6] Bi Wei-Hong, Wang Yuan-Yuan, Fu Guang-Wei, Wang Xiao-Yu, Li Cai-Li. Study on the electro-optic modulation properties of graphene-coated hollow optical fiber. Acta Physica Sinica, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [7] Research on the synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition *. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200750
    [8] Zhang Wei-Gang, Zhang Yan-Xin, Geng Peng-Cheng, Wang Biao, Li Xiao-Lan, Wang Song, Yan Tie-Yi. Recent progress in design and fabrication of novel long-period fiber grating. Acta Physica Sinica, 2017, 66(7): 070704. doi: 10.7498/aps.66.070704
    [9] Rao Yun-Jiang, Mo Qiu-Ju, Zhu Tao. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [10] Tan Zhong-Wei, Cao Ji-Hong, Chen Yong, Liu Yan, Ning Ti-Gang, Jian Shui-Sheng. Multi-wavelength dispersion compensator based on fiber gratings with low crosstalk. Acta Physica Sinica, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [11] Rao Yun-Jiang, Mo Qiu-Ju, Wang Jiu-Ling, Zhu Tao. Study on characteristics of a CO2-laser-induced ultra-long-period fiber grating. Acta Physica Sinica, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [12] Liu Jia-Xing, Liu Xia, Zhong Shou-Dong, Wang Jian-Qiang, Zhang Da-Peng, Wang Xing-Long. Fiber gratings matching and output characteristics of fiber laser. Acta Physica Sinica, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [13] Pei Li, Ning Ti-Gang, Li Tang-Jun, Dong Xiao-Wei, Jian Shui-Sheng. Studies on the dispersion compensation of fiber Bragg grating in high-speed opti cal communication system. Acta Physica Sinica, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [14] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [15] Zhang Fa-Ye, Jiang Ming-Shun, Sui Qing-Mei, Lü Shan-Shan, Shan Jia. Acoustic emission localization technique based on fiber Bragg grating sensing network and signal feature reconstruction. Acta Physica Sinica, 2017, 66(7): 074210. doi: 10.7498/aps.66.074210
    [16] Lü Ke-Cheng, Li Jia-Fang, Li Yi-Gang, Chen Sheng-Ping, Han Qun. Research on a novel fiber Bragg grating thermal tuning scheme*. Acta Physica Sinica, 2004, 53(12): 4253-4256. doi: 10.7498/aps.53.4253
    [17] Dong Xiao-Wei, Pei-Li, Jian Shui-Sheng. Add/drop channel filter based on fiber-Bragg-grating-assisted coupler fabricated by asymmetric fused taper technology. Acta Physica Sinica, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [18] Qiao Xue-Guang, Jia Zhen-An, Li Ming, Zhou Hong, Fu Hai-Wei. Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
    [19] Song Yun, Zhu Yong, Zhu Tao, Rao Yun-Jiang. Theory and fabrication of long period fiber grating with rotary refractive index modulation induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [20] Chen Xiang-Fei, Zheng Ji-Lin, Wang Rong, Fang Tao, Lu Lin, Pu Tao. A novel method of chirp elimination using reconstruction equivalent chirp superstructured fiber Bragg grating. Acta Physica Sinica, 2009, 58(10): 7017-7024. doi: 10.7498/aps.58.7017
  • Citation:
Metrics
  • Abstract views:  1025
  • PDF Downloads:  293
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2017
  • Accepted Date:  06 April 2017
  • Published Online:  05 June 2017

Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber

    Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
  • 1. School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
  • 2. Key Laboratory of Optical Fiber Communication Technology, Chongqing Education Commission, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
  • 3. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11304409, 61475127, 61575163), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013jcyjA4004), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing, China (Grant No. CSTC2015zdcy-ztzx40003).

Abstract: The Tm-doped mode-locked pulsed fiber lasers, which are known for their wide applications in optical communication, laser medical system and special material processing, have attracted considerable interest as novel laser sources. Up to now, many reported Tm-doped mode-locked fiber lasers focused on emitting picosecond or femtosecond pulses at a few megahertz (MHz) repetition rate. Actually, due to the strong chirp, large pulse width, low peak power and little nonlinear phase accumulation characteristics in the process of power amplifier, nanosecond mode-locked fiber laser is a representative of ideal seed source in the chirped pulse amplification (CPA) system. However, nanosecond mode-locked fiber lasers are generally implemented with the kilometerlong cavity length, corresponding to the fundamental repetition rate of hundreds of kilohertz. Usually, fiber lasers with such a low repetition rate are not desirable in applications of laser material processing, nor medical treatment nor scientific researches. In this paper, we report a nanosecond mode-locked Tm-doped fiber laser with MHz repetition rate based on graphene saturable absorber (SA). As the SA, graphene has excellent optical properties, such as optical visualization, high transparency, ultra-fast relaxation time and nonlinear absorption. It is not limited by the band gap either because of its zero-band-gap structure. Therefore, graphene can be used as fast SA, with wide spectral range operated. Generally, graphene suitable for mode-locked fiber lasers can be produced by using chemical vapor deposition (CVD), liquid phase exfoliation and mechanical exfoliation. Since the CVD technique can obtain high-quality graphene with precisely controlled number of layers, it is always the first choice for the manufacture of graphene. In our work, monolayer graphene layers are grown on copper foils by CVD, and then transferred onto the end face of the fiber connector three times. Meanwhile, a narrow-band fiber Bragg grating is used to constrain longitudinal modes of the laser intra-cavity. By simply adjusting the pump power and the polarization angle of polarization controller, stable 2 μm nanosecond mode-locked pulses are obtained in a wide range from 3.8 ns to 94.3 ns at 3.8 MHz repetition rate. We believe that the results obtained will be helpful for investigating the CPA system at 2 μm.

Reference (34)

Catalog

    /

    返回文章
    返回