Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of plasmonic cathodoluminesecence characterization

Jiang Mei-Ling Zheng Li-Heng Chi Cheng Zhu Xing Fang Zhe-Yu

Research progress of plasmonic cathodoluminesecence characterization

Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu
PDF
Get Citation
  • Surface plasmons as the collective electrons oscillation at the interface of metal and dielectric materials, have induced tremendous applications for the nanoscale light focusing, waveguiding, coupling, and photodetection. As the development of the modern technology, cathodoluminescence (CL) has been successfully applied to describe the plasmon resonance within the nanoscale. Usually, the CL detection system is combined with a high resolution scanning electron microscope (SEM). The fabricated plasmonic nanostructure is directly excited by the electron beam, and detected by an ultra-sensitive spectrometer and photodetector. Under the high energy electron stimulation, all of the plasmon resonances of the metallic nanostructure can be excited. Because of the high spatial resolution of the SEM, the detected CL can be used to analyze the details of plasmon resonance modes. In this review, we first briefly introduced the physical mechanism for the CL generation, and then discussed the CL emission of single plasmonic nanostructures such as different nanowires, nanoantennas, nanodisks and nanocavities, where the CL only describes the individual plasmon resonance modes. Second, the plasmon coupling behavior for the ensemble measurement was compared and analyzed for the CL detection. Finally, the CL detection with other advanced technologies were concluded. We believe with the development of the nanophotonics community, CL detection as a unique technique with ultra-high energy and spatial resolution has potential applications for the future plasmonic structure design and characterization.
      Corresponding author: Fang Zhe-Yu, zhyfang@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0205700, 2015CB932403, 2017YFA0206000), the National Natural Science Foundation of China (Grant Nos. 61422501, 11674012, 11374023, 61176120, 61378059, 61521004), the Natural Science Foundation of Beijing, China(Grant No. L140007), and the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD) (Grant No. 201420).
    [1]

    Christen J, Grundmann M, Bimberg D 1991 J. Vac. Sci. Technol. B 9 2358

    [2]

    Schieber J, Krinsley D, Riciputi L 2000 Nature 406 981

    [3]

    Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C 2003 Am. Mineral 88 1778

    [4]

    Pennycook S J 2008 Scanning 30 287

    [5]

    Yacobi B, Holt D 1986 J. Appl. Phys. 59 R1

    [6]

    Shubina T, Ivanov S, Jmerik V, Solnyshkov D, Vekshin V, Kop'ev P, Vasson A, Leymarie J, Kavokin A, Amano H 2004 Phys. Rev. Lett. 92 117407

    [7]

    Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T, Hashimoto M 2011 Appl. Phys. Express 4 112402

    [8]

    Barnett W, Wise M, Jones E 1975 J. Microsc. 105 299

    [9]

    Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E, Polman A 2012 MRS Bull. 37 752

    [10]

    Vesseur E J R, de Waele R, Kuttge M, Polman A 2007 Nano Lett. 7 2843

    [11]

    Kuttge M, Garca de Abajo F J, Polman A 2009 Nano Lett. 10 1537

    [12]

    Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, Garca de Abajo F J, Polman A, Atwater H A 2007 Nano Lett. 7 3612

    [13]

    Barnard E S, Coenen T, Vesseur E J R, Polman A, Brongersma M L 2011 Nano Lett. 11 4265

    [14]

    Bischak C G, Hetherington C L, Wang Z, Precht J T, Kaz D M, Schlom D G, Ginsberg N S 2015 Nano Lett. 15 3383

    [15]

    Maity A, Maiti A, Das P, Senapati D, Kumar Chini T 2014 ACS Photon. 1 1290

    [16]

    Atre A C, Brenny B J, Coenen T, Garca-Etxarri A, Polman A, Dionne J A 2015 Nature Nanotech. 10 429

    [17]

    Fang Y, Verre R, Shao L, Nordlander P, Kall M 2016 Nano Lett. 16 5183

    [18]

    Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900

    [19]

    van Wijngaarden J 2005 Citeseer

    [20]

    Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095

    [21]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 10.1002/advs.201600430

    [22]

    Fang Z, Zhu X 2013 Adv. Mater. 25 3840

    [23]

    de Abajo F G 2010 Rev. Mod. Phys. 82 209

    [24]

    Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z 2015 ACS Nano 9 10158

    [25]

    Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, Fang N X 2009 ACS Nano 3 2965

    [26]

    Coenen T, Vesseur E J R, Polman A, Koenderink A F 2011 Nano Lett. 11 3779

    [27]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nature Mater. 2 229

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [30]

    Li Z, Li Y, Han T, Wang X, Yu Y, Tay B K, Liu Z, Fang Z 2017 ACS Nano 11 1165

    [31]

    Lal S, Link S, Halas N J 2007 Nature Photon. 1 641

    [32]

    Sorger V J, Oulton R F, Yao J, Bartal G, Zhang X 2009 Nano Lett. 9 3489

    [33]

    Bashevoy M, Jonsson F, MacDonald K, Chen Y, Zheludev N 2007 Opt. Express 15 11313

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, Kimble H 2006 Nature 443 671

    [36]

    Reithmaier J, Sęk G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A 2004 Nature 432 197

    [37]

    Vahala K J 2003 Nature 424 839

    [38]

    Nelayah J, Kociak M, Stphan O, de Abajo F J G, Tenc M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzn L M, Colliex C 2007 Nature Phys. 3 348

    [39]

    Shuford K L, Ratner M A, Schatz G C 2005 J. Chem. Phys. 123 114713

    [40]

    Sherry L J, Jin R, Mirkin C A, Schatz G C, van Duyne R P 2006 Nano Lett. 6 2060

    [41]

    Das P, Chini T K, Pond J 2012 J. Phys. Chem. C 116 15610

    [42]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [43]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657

    [44]

    Wu Y, Nordlander P 2009 J. Phys. Chem. C 114 7302

    [45]

    Das P, Kedia A, Kumar P S, Large N, Chini T K 2013 Nanotechnology 24 405704

    [46]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [47]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [48]

    Frimmer M, Coenen T, Koenderink A F 2012 Phys. Rev. Lett. 108 077404

    [49]

    Day J K, Large N, Nordlander P, Halas N J 2015 Nano Lett. 15 1324

    [50]

    Segal E, Weissman A, Gachet D, Salomon A 2016 Nanoscale 8 15296

    [51]

    Coenen T, Vesseur E J R, Polman A 2011 Appl. Phys. Lett. 99 203904

    [52]

    Zhang X, Rich D H, Kobayashi J T, Kobayashi N P, Dapkus P D 1998 Appl. Phys. Lett. 73 1430

    [53]

    Coenen T, Vesseur E J R, Polman A 2012 ACS Nano 6 1742

    [54]

    Coenen T, Arango F B, Koenderink A F, Polman A 2014 Nat. Commun. 5 3250

    [55]

    Coenen T, Polman A 2014 ACS Nano 8 7350

    [56]

    Mohtashami A, Coenen T, Antoncecchi A, Polman A, Koenderink A F 2014 ACS Photon. 1 1134

    [57]

    Osorio C I, Coenen T, Brenny B J, Polman A, Koenderink A F 2015 ACS Photon. 3 147

    [58]

    Estrin Y, Rich D H, Kretinin A V, Shtrikman H 2013 Nano Lett. 13 1602

    [59]

    Leithuser G E 1904 Ann. Phys. 320 283

    [60]

    Losquin A, Zagonel L F, Myroshnychenko V, Rodrguez-Gonzlez B, Tenc M, Scarabelli L, Forstner J, Liz-Marzn L M, Garca de Abajo F J, Stphan O 2015 Nano Lett. 15 1229

    [61]

    Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodrguez-Fernandez J, Pastoriza-Santos I, MacDonald K F, Henrard L, Liz-Mrzan L M, Zheludev N I 2012 Nano Lett. 12 4172

    [62]

    Coenen T, Schoen D T, Mann S A, Rodriguez S R, Brenny B J, Polman A, Brongersma M L 2015 Nano Lett. 15 7666

    [63]

    Kawasaki N, Meuret S, Weil R, Loureno-Martins H, Stphan O, Kociak M 2016 ACS Photon. 3 1654

    [64]

    Knight M W, Liu L, Wang Y, Brown L, Mukherjee S, King N S, Everitt H O, Nordlander P, Halas N J 2012 Nano Lett. 12 6000

    [65]

    Knight M W, Coenen T, Yang Y, Brenny B J, Losurdo M, Brown A S, Everitt H O, Polman A 2015 ACS Nano 9 2049

    [66]

    Lee S M, Choi K C, Kim D H, Jeon D Y 2011 Opt. Express 19 13209

  • [1]

    Christen J, Grundmann M, Bimberg D 1991 J. Vac. Sci. Technol. B 9 2358

    [2]

    Schieber J, Krinsley D, Riciputi L 2000 Nature 406 981

    [3]

    Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C 2003 Am. Mineral 88 1778

    [4]

    Pennycook S J 2008 Scanning 30 287

    [5]

    Yacobi B, Holt D 1986 J. Appl. Phys. 59 R1

    [6]

    Shubina T, Ivanov S, Jmerik V, Solnyshkov D, Vekshin V, Kop'ev P, Vasson A, Leymarie J, Kavokin A, Amano H 2004 Phys. Rev. Lett. 92 117407

    [7]

    Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T, Hashimoto M 2011 Appl. Phys. Express 4 112402

    [8]

    Barnett W, Wise M, Jones E 1975 J. Microsc. 105 299

    [9]

    Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E, Polman A 2012 MRS Bull. 37 752

    [10]

    Vesseur E J R, de Waele R, Kuttge M, Polman A 2007 Nano Lett. 7 2843

    [11]

    Kuttge M, Garca de Abajo F J, Polman A 2009 Nano Lett. 10 1537

    [12]

    Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, Garca de Abajo F J, Polman A, Atwater H A 2007 Nano Lett. 7 3612

    [13]

    Barnard E S, Coenen T, Vesseur E J R, Polman A, Brongersma M L 2011 Nano Lett. 11 4265

    [14]

    Bischak C G, Hetherington C L, Wang Z, Precht J T, Kaz D M, Schlom D G, Ginsberg N S 2015 Nano Lett. 15 3383

    [15]

    Maity A, Maiti A, Das P, Senapati D, Kumar Chini T 2014 ACS Photon. 1 1290

    [16]

    Atre A C, Brenny B J, Coenen T, Garca-Etxarri A, Polman A, Dionne J A 2015 Nature Nanotech. 10 429

    [17]

    Fang Y, Verre R, Shao L, Nordlander P, Kall M 2016 Nano Lett. 16 5183

    [18]

    Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900

    [19]

    van Wijngaarden J 2005 Citeseer

    [20]

    Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095

    [21]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 10.1002/advs.201600430

    [22]

    Fang Z, Zhu X 2013 Adv. Mater. 25 3840

    [23]

    de Abajo F G 2010 Rev. Mod. Phys. 82 209

    [24]

    Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z 2015 ACS Nano 9 10158

    [25]

    Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, Fang N X 2009 ACS Nano 3 2965

    [26]

    Coenen T, Vesseur E J R, Polman A, Koenderink A F 2011 Nano Lett. 11 3779

    [27]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nature Mater. 2 229

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [30]

    Li Z, Li Y, Han T, Wang X, Yu Y, Tay B K, Liu Z, Fang Z 2017 ACS Nano 11 1165

    [31]

    Lal S, Link S, Halas N J 2007 Nature Photon. 1 641

    [32]

    Sorger V J, Oulton R F, Yao J, Bartal G, Zhang X 2009 Nano Lett. 9 3489

    [33]

    Bashevoy M, Jonsson F, MacDonald K, Chen Y, Zheludev N 2007 Opt. Express 15 11313

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, Kimble H 2006 Nature 443 671

    [36]

    Reithmaier J, Sęk G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A 2004 Nature 432 197

    [37]

    Vahala K J 2003 Nature 424 839

    [38]

    Nelayah J, Kociak M, Stphan O, de Abajo F J G, Tenc M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzn L M, Colliex C 2007 Nature Phys. 3 348

    [39]

    Shuford K L, Ratner M A, Schatz G C 2005 J. Chem. Phys. 123 114713

    [40]

    Sherry L J, Jin R, Mirkin C A, Schatz G C, van Duyne R P 2006 Nano Lett. 6 2060

    [41]

    Das P, Chini T K, Pond J 2012 J. Phys. Chem. C 116 15610

    [42]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [43]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657

    [44]

    Wu Y, Nordlander P 2009 J. Phys. Chem. C 114 7302

    [45]

    Das P, Kedia A, Kumar P S, Large N, Chini T K 2013 Nanotechnology 24 405704

    [46]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [47]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [48]

    Frimmer M, Coenen T, Koenderink A F 2012 Phys. Rev. Lett. 108 077404

    [49]

    Day J K, Large N, Nordlander P, Halas N J 2015 Nano Lett. 15 1324

    [50]

    Segal E, Weissman A, Gachet D, Salomon A 2016 Nanoscale 8 15296

    [51]

    Coenen T, Vesseur E J R, Polman A 2011 Appl. Phys. Lett. 99 203904

    [52]

    Zhang X, Rich D H, Kobayashi J T, Kobayashi N P, Dapkus P D 1998 Appl. Phys. Lett. 73 1430

    [53]

    Coenen T, Vesseur E J R, Polman A 2012 ACS Nano 6 1742

    [54]

    Coenen T, Arango F B, Koenderink A F, Polman A 2014 Nat. Commun. 5 3250

    [55]

    Coenen T, Polman A 2014 ACS Nano 8 7350

    [56]

    Mohtashami A, Coenen T, Antoncecchi A, Polman A, Koenderink A F 2014 ACS Photon. 1 1134

    [57]

    Osorio C I, Coenen T, Brenny B J, Polman A, Koenderink A F 2015 ACS Photon. 3 147

    [58]

    Estrin Y, Rich D H, Kretinin A V, Shtrikman H 2013 Nano Lett. 13 1602

    [59]

    Leithuser G E 1904 Ann. Phys. 320 283

    [60]

    Losquin A, Zagonel L F, Myroshnychenko V, Rodrguez-Gonzlez B, Tenc M, Scarabelli L, Forstner J, Liz-Marzn L M, Garca de Abajo F J, Stphan O 2015 Nano Lett. 15 1229

    [61]

    Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodrguez-Fernandez J, Pastoriza-Santos I, MacDonald K F, Henrard L, Liz-Mrzan L M, Zheludev N I 2012 Nano Lett. 12 4172

    [62]

    Coenen T, Schoen D T, Mann S A, Rodriguez S R, Brenny B J, Polman A, Brongersma M L 2015 Nano Lett. 15 7666

    [63]

    Kawasaki N, Meuret S, Weil R, Loureno-Martins H, Stphan O, Kociak M 2016 ACS Photon. 3 1654

    [64]

    Knight M W, Liu L, Wang Y, Brown L, Mukherjee S, King N S, Everitt H O, Nordlander P, Halas N J 2012 Nano Lett. 12 6000

    [65]

    Knight M W, Coenen T, Yang Y, Brenny B J, Losurdo M, Brown A S, Everitt H O, Polman A 2015 ACS Nano 9 2049

    [66]

    Lee S M, Choi K C, Kim D H, Jeon D Y 2011 Opt. Express 19 13209

  • [1] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [2] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [3] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [4] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [5] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [6] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [7] Li Min, Zhang Zhi-You, Shi Sha, Du Jing-Lei. Optimization and analysis of the structural parameters of subwavelength metal focusing lens. Acta Physica Sinica, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [8] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [9] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [10] Hu Chang-Bao, Xu Ji, Ding Jian-Ping. Subwavelength light focusing using quadric cylinder surface plasmonic lens with gold film slits filled with dielectric. Acta Physica Sinica, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [11] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [12] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [13] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] Shan Hong, Yi Yong-Xiang, Wang Guo-Ping, Long Yong-Bing. Optical transmission enhancement of two-dimensional subwavelength hole arrays in metallic films. Acta Physica Sinica, 2003, 52(3): 604-608. doi: 10.7498/aps.52.604
    [15] Yao Yao, Shen Yue, Hao Jia-Ming, Dai Ning. Antireflection coatings based on subwavelength artificial engineering microstructures. Acta Physica Sinica, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [16] Zhang Yi-Nan, Wang Li-Hua, Liu Hua-Jie, Fan Chun-Hai. DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics. Acta Physica Sinica, 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [17] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [18] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [19] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [20] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
  • Citation:
Metrics
  • Abstract views:  319
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2017
  • Accepted Date:  02 May 2017
  • Published Online:  20 July 2017

Research progress of plasmonic cathodoluminesecence characterization

    Corresponding author: Fang Zhe-Yu, zhyfang@pku.edu.cn
  • 1. School of Physics, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0205700, 2015CB932403, 2017YFA0206000), the National Natural Science Foundation of China (Grant Nos. 61422501, 11674012, 11374023, 61176120, 61378059, 61521004), the Natural Science Foundation of Beijing, China(Grant No. L140007), and the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD) (Grant No. 201420).

Abstract: Surface plasmons as the collective electrons oscillation at the interface of metal and dielectric materials, have induced tremendous applications for the nanoscale light focusing, waveguiding, coupling, and photodetection. As the development of the modern technology, cathodoluminescence (CL) has been successfully applied to describe the plasmon resonance within the nanoscale. Usually, the CL detection system is combined with a high resolution scanning electron microscope (SEM). The fabricated plasmonic nanostructure is directly excited by the electron beam, and detected by an ultra-sensitive spectrometer and photodetector. Under the high energy electron stimulation, all of the plasmon resonances of the metallic nanostructure can be excited. Because of the high spatial resolution of the SEM, the detected CL can be used to analyze the details of plasmon resonance modes. In this review, we first briefly introduced the physical mechanism for the CL generation, and then discussed the CL emission of single plasmonic nanostructures such as different nanowires, nanoantennas, nanodisks and nanocavities, where the CL only describes the individual plasmon resonance modes. Second, the plasmon coupling behavior for the ensemble measurement was compared and analyzed for the CL detection. Finally, the CL detection with other advanced technologies were concluded. We believe with the development of the nanophotonics community, CL detection as a unique technique with ultra-high energy and spatial resolution has potential applications for the future plasmonic structure design and characterization.

Reference (66)

Catalog

    /

    返回文章
    返回