Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Super-resolution microscopic effect of microsphere based on the near-field optics

Zhou Rui Wu Meng-Xue Shen Fei Hong Ming-Hui

Super-resolution microscopic effect of microsphere based on the near-field optics

Zhou Rui, Wu Meng-Xue, Shen Fei, Hong Ming-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the field of optical imaging, the conventional imaging resolution is about 200 nm due to the diffraction limit. The higher resolution is urgently needed for further developing scientific research. Therefore, how to break through this limitation to acquire high quality and high resolution image has become a hot research topic. The microspheres with the size of tens of micrometers exhibit the ability to improve the imaging resolution of the conventional optical microscope by locating them directly on the sample surface. Due to its simplicity, the microsphere optical nanoscope technology is widely studied. This paper introduces the research background of the optical microscope and the research progress of microsphere optical nanoscope technology. At the same time, approaches to adjusting the photonic nanojet generated by the microspheres by fabricating concentric ringing, central mask, and surface coating of microspheres are reviewed. The possible reasons for this improved resolution are discussed. The applications and development of the microsphere ultra-microscopic technology in the future are discussed.
      Corresponding author: Zhou Rui, rzhou2@xmu.edu.cn;elehmh@nus.edu.sg ; Hong Ming-Hui, rzhou2@xmu.edu.cn;elehmh@nus.edu.sg
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01703), the National Natural Science Foundation of China (Grant No. 61605162), the Natural Science Foundation of Fujian Province of China (Grant No. 2017J05106), the State Key Laboratory of Optical Technology for Microfabrication of Institute of Optics and Electronics the Chinese Academy of Sciences (KFS4), and the Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian, China.
    [1]

    Abbe E 1873 Acchiv. Mikroskop. Anat. 9 413

    [2]

    von Helmholtz H 1874 Ann. Phys. Chem. 557

    [3]

    Stephenson J W 1877 Monthly. Microsc. J. 17 82

    [4]

    Francia G T D 1952 Suppl. Nuovo. Cim. 9 426

    [5]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Ge J, Liu X 2013 Light: Sci. Appl. 2 e108

    [6]

    Courjon D, Bainier C 1994 Rep. Prog. Phys. 57 989

    [7]

    Greffet J J, Carminati R 1997 Pro. Surf. Sci. 56 133

    [8]

    Nassenstein H 1970 Opt. Commun. 2 231

    [9]

    Ash E A, Nicholls G 1972 Nature 237 510

    [10]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [13]

    Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283

    [14]

    Aydin K, Bulu I, Ozbay E 2007 Appl. Phys. Lett. 90 77

    [15]

    Tyc T, Zhang X 2011 Nature 480 42

    [16]

    Shalaev V M 2007 Nat. Photon 1 41

    [17]

    Liu Z, Fang N, Yen T J, Xiang Z 2003 Appl. Phys. Lett. 83 5184

    [18]

    Zhang X, Liu Z 2008 Nature Mater. 7 435

    [19]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [20]

    Jacob Z, Alekseyev L, Narimanov E 2006 Opt. Express 14 8247

    [21]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [22]

    Upputuri P K, Wen Z B, Wu Z, Pramanik M 2014 J. Biomed. Opt. 19 116003

    [23]

    Hell S W 2007 Science 316 1153

    [24]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [25]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [26]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincottschwartz J, Hess H F 2006 Science 313 1642

    [27]

    Bastiaens P I H, Squire A 1999 Trends. Cell. Biol. 9 48

    [28]

    Kenworthy A K 2001 Methods 24 289

    [29]

    Hein B, Willig K I, Hell S W 2008 Proc. Nat. Acad. Sci. 105 14271

    [30]

    Min W, Lu S, Chong S, Roy R, Holtom G R, Xie X S 2009 Nature 461 1105

    [31]

    Wang Z, Guo W, Li L, Luk'Yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [32]

    Darafsheh A, Limberopoulos N I, Derov J S, Walker Jr D E, Astratov V N 2014 Appl. Phys. Lett. 104 061117

    [33]

    Krivitsky L A, Jia J W, Wang Z, Luk'Yanchuk B 2013 Sci. Rep. 3 3501

    [34]

    Li L, Guo W, Yan Y, Lee S, Wang T 2013 Light-Sci. Appl. 2 72

    [35]

    Yang H, Moullan N, Auwerx J, Gijs M A 2014 Small 10 1712

    [36]

    Guo H, Han Y, Weng X, Zhao Y, Sui G, Wang Y, Zhuang S 2013 Opt. Express 21 2434

    [37]

    Lee S, Li L, Wang Z 2014 J. Opt. 16 015704

    [38]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Liberman V, Astratov V N 2015 Ann. Phys. 527 513

    [39]

    Wang Y, Guo S, Wang D, Lin Q, Rong L, Zhao J 2016 Opt. Commun. 366 81

    [40]

    Lin Q, Wang D, Wang Y, Rong L, Zhao J, Guo S, Wang M 2016 Opt. Quantum Electron. 48 557

    [41]

    Yan B, Yue L, Wang Z 2016 Opt. Commun. 370 140

    [42]

    Wang S, Zhang D, Zhang H, Han X, Xu R 2015 Microsc. Res. Tech. 78 1128

    [43]

    Wu L, Zhu H, Yan B, Wang Z, Zhou S 2015 J. Mater. Chem. C 3 10907

    [44]

    Hao X, Kuang C, Li Y, Liu X, Ku Y, Jiang Y 2012 Opt. Commun. 285 4130

    [45]

    Lai H S S, Wang F, Li Y, Jia B, Liu L, Li W J 2016 PLoS One. 11 e0165194

    [46]

    Guo M, Ye Y H, Hou J, Du B 2016 Appl. Phys. B 122 65

    [47]

    Guo M, Ye Y H, Hou J, Du B 2015 Photon. Res. 3 339

    [48]

    Darafsheh A, Walsh G F, Dal Negro L, Astratov V N 2012 Appl. Phys. Lett. 101 14128

    [49]

    Wang T, Kuang C, Hao X, Liu X 2011 J. Opt. 13 035702

    [50]

    Lee S, Li L, Wang Z, Guo W, Yan Y, Wang T 2013 Appl. Opt. 52 7265

    [51]

    Yang H, Gijs M A M 2015 Microelectron. Eng. 143 86

    [52]

    Yao L, Ye Y H, Feng Ma H, Cao L, Hou J 2015 Opt. Commun. 335 23

    [53]

    Hao X, Kuang C, Liu X, Zhang H, Li Y 2011 Appl. Phys. Lett. 99 203102

    [54]

    Lee S, Li L, Benaryeh Y, Wang Z, Guo W 2013 J. Opt. 15 125710

    [55]

    Lee S, Li L 2015 Opt. Commun. 334 253

    [56]

    Lu Y F, Zhang L, Song W D, Zheng Y W, Luk'Yanchuk B S 2000 JETP Lett. 72 457

    [57]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214

    [58]

    Yang H, Cornaglia M, Gijs M A M 2015 Nano Lett. 15 46

    [59]

    Wu M H, Whitesides G M 2001 Appl. Phys. Lett. 78 2273

    [60]

    Li X, Chen Z, Taflove A, Backman V 2005 Opt. Express 13 526

    [61]

    Ferrand P, Wenger J, Devilez A, Pianta M, Stout B, Bonod N, Popov E, Rigneault H 2008 Opt. Express 16 6930

    [62]

    Zhang Z, Geng C, Hao Z, Wei T, Yan Q 2016 Adv. Colloid Interface Sci. 228 105

    [63]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [64]

    Gu G, Zhou R, Chen Z, Xu H, Cai G, Cai Z, Hong M 2015 Opt. Lett. 40 625

    [65]

    Kong S C, Taflove A, Backman V 2010 Opt. Express 17 3722

    [66]

    Zhu H, Chen Z, Chong T C, Hong M 2015 Opt. Express 23 6626

    [67]

    Houston W V 1927 Phys. Rev. 29 478

    [68]

    Wu M, Huang B, Chen R, Yang Y, Wu J, Ji R, Chen X, Hong M 2015 Opt. Express 23 20096

    [69]

    Wu M, Chen R, Soh J, Shen Y, Jiao L, Wu J, Chen X, Ji R, Hong M 2016 Sci. Rep. 6 31637

    [70]

    Durnin J, Miceli Jr J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [71]

    McGloin D, Dholakia K 2005 Contem. Phys. 46 15

    [72]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [73]

    Bennett, Harold E 1988 Laser Induced Damage in Optical Materials, 1986 : Proceedings of a Symposium, NIST (formerly NBS) Boulder, Colorado, November 3-5, 1986 p707

    [74]

    Niklasson G A, Li S Y, Granqvist C G 2014 Parallel Session of the 18th International School on Condensed Matter Physics Varna, Bulgaria, September 4-6, 2014 p012001

    [75]

    Lu S, Hou L, Gan F 1993 J. Mater. Sci. 28 2169

    [76]

    Soh J H, Wu M, Gu G, Chen L, Hong M 2016 Appl. Opt. 55 3751

    [77]

    Hao X, Liu X, Kuang C, Li Y 2013 Appl. Phys. Lett. 102 013104

    [78]

    Ben-Aryeh Y 2006 Appl. Phys. B 84 121

    [79]

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207 (in Chinese) [王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]

    [80]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano Lett. 16 4862

    [81]

    Pereira A, Grojo D, Chaker M, Delaporte P, Guay D, Sentis M 2008 Small 4 572

    [82]

    Mcleod E, Arnold C B 2008 Nature Nanotech. 3 413

    [83]

    Mcleod E, Arnold C B 2009 Opt. Express 17 3640

    [84]

    Li P Y, Tsao Y, Liu Y J, Lou Z X, Lee W L, Chu S W, Chang C W 2016 Opt. Express 24 16479

    [85]

    Darafsheh A, Guardiola C, Palovcak A, Finlay J C, Cárabe A 2015 Opt. Lett. 40 5

    [86]

    Liu C, Jin L D, Ye A P 2016 Acta Phys. Sin. 53 19 (in Chinese) [刘畅, 金璐頔, 叶安培 2016 激光与光电子学进展 53 19]

    [87]

    Wang Z 2015 Nanoscience 3 193

  • [1]

    Abbe E 1873 Acchiv. Mikroskop. Anat. 9 413

    [2]

    von Helmholtz H 1874 Ann. Phys. Chem. 557

    [3]

    Stephenson J W 1877 Monthly. Microsc. J. 17 82

    [4]

    Francia G T D 1952 Suppl. Nuovo. Cim. 9 426

    [5]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Ge J, Liu X 2013 Light: Sci. Appl. 2 e108

    [6]

    Courjon D, Bainier C 1994 Rep. Prog. Phys. 57 989

    [7]

    Greffet J J, Carminati R 1997 Pro. Surf. Sci. 56 133

    [8]

    Nassenstein H 1970 Opt. Commun. 2 231

    [9]

    Ash E A, Nicholls G 1972 Nature 237 510

    [10]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [13]

    Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283

    [14]

    Aydin K, Bulu I, Ozbay E 2007 Appl. Phys. Lett. 90 77

    [15]

    Tyc T, Zhang X 2011 Nature 480 42

    [16]

    Shalaev V M 2007 Nat. Photon 1 41

    [17]

    Liu Z, Fang N, Yen T J, Xiang Z 2003 Appl. Phys. Lett. 83 5184

    [18]

    Zhang X, Liu Z 2008 Nature Mater. 7 435

    [19]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [20]

    Jacob Z, Alekseyev L, Narimanov E 2006 Opt. Express 14 8247

    [21]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [22]

    Upputuri P K, Wen Z B, Wu Z, Pramanik M 2014 J. Biomed. Opt. 19 116003

    [23]

    Hell S W 2007 Science 316 1153

    [24]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [25]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [26]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincottschwartz J, Hess H F 2006 Science 313 1642

    [27]

    Bastiaens P I H, Squire A 1999 Trends. Cell. Biol. 9 48

    [28]

    Kenworthy A K 2001 Methods 24 289

    [29]

    Hein B, Willig K I, Hell S W 2008 Proc. Nat. Acad. Sci. 105 14271

    [30]

    Min W, Lu S, Chong S, Roy R, Holtom G R, Xie X S 2009 Nature 461 1105

    [31]

    Wang Z, Guo W, Li L, Luk'Yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [32]

    Darafsheh A, Limberopoulos N I, Derov J S, Walker Jr D E, Astratov V N 2014 Appl. Phys. Lett. 104 061117

    [33]

    Krivitsky L A, Jia J W, Wang Z, Luk'Yanchuk B 2013 Sci. Rep. 3 3501

    [34]

    Li L, Guo W, Yan Y, Lee S, Wang T 2013 Light-Sci. Appl. 2 72

    [35]

    Yang H, Moullan N, Auwerx J, Gijs M A 2014 Small 10 1712

    [36]

    Guo H, Han Y, Weng X, Zhao Y, Sui G, Wang Y, Zhuang S 2013 Opt. Express 21 2434

    [37]

    Lee S, Li L, Wang Z 2014 J. Opt. 16 015704

    [38]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Liberman V, Astratov V N 2015 Ann. Phys. 527 513

    [39]

    Wang Y, Guo S, Wang D, Lin Q, Rong L, Zhao J 2016 Opt. Commun. 366 81

    [40]

    Lin Q, Wang D, Wang Y, Rong L, Zhao J, Guo S, Wang M 2016 Opt. Quantum Electron. 48 557

    [41]

    Yan B, Yue L, Wang Z 2016 Opt. Commun. 370 140

    [42]

    Wang S, Zhang D, Zhang H, Han X, Xu R 2015 Microsc. Res. Tech. 78 1128

    [43]

    Wu L, Zhu H, Yan B, Wang Z, Zhou S 2015 J. Mater. Chem. C 3 10907

    [44]

    Hao X, Kuang C, Li Y, Liu X, Ku Y, Jiang Y 2012 Opt. Commun. 285 4130

    [45]

    Lai H S S, Wang F, Li Y, Jia B, Liu L, Li W J 2016 PLoS One. 11 e0165194

    [46]

    Guo M, Ye Y H, Hou J, Du B 2016 Appl. Phys. B 122 65

    [47]

    Guo M, Ye Y H, Hou J, Du B 2015 Photon. Res. 3 339

    [48]

    Darafsheh A, Walsh G F, Dal Negro L, Astratov V N 2012 Appl. Phys. Lett. 101 14128

    [49]

    Wang T, Kuang C, Hao X, Liu X 2011 J. Opt. 13 035702

    [50]

    Lee S, Li L, Wang Z, Guo W, Yan Y, Wang T 2013 Appl. Opt. 52 7265

    [51]

    Yang H, Gijs M A M 2015 Microelectron. Eng. 143 86

    [52]

    Yao L, Ye Y H, Feng Ma H, Cao L, Hou J 2015 Opt. Commun. 335 23

    [53]

    Hao X, Kuang C, Liu X, Zhang H, Li Y 2011 Appl. Phys. Lett. 99 203102

    [54]

    Lee S, Li L, Benaryeh Y, Wang Z, Guo W 2013 J. Opt. 15 125710

    [55]

    Lee S, Li L 2015 Opt. Commun. 334 253

    [56]

    Lu Y F, Zhang L, Song W D, Zheng Y W, Luk'Yanchuk B S 2000 JETP Lett. 72 457

    [57]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214

    [58]

    Yang H, Cornaglia M, Gijs M A M 2015 Nano Lett. 15 46

    [59]

    Wu M H, Whitesides G M 2001 Appl. Phys. Lett. 78 2273

    [60]

    Li X, Chen Z, Taflove A, Backman V 2005 Opt. Express 13 526

    [61]

    Ferrand P, Wenger J, Devilez A, Pianta M, Stout B, Bonod N, Popov E, Rigneault H 2008 Opt. Express 16 6930

    [62]

    Zhang Z, Geng C, Hao Z, Wei T, Yan Q 2016 Adv. Colloid Interface Sci. 228 105

    [63]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [64]

    Gu G, Zhou R, Chen Z, Xu H, Cai G, Cai Z, Hong M 2015 Opt. Lett. 40 625

    [65]

    Kong S C, Taflove A, Backman V 2010 Opt. Express 17 3722

    [66]

    Zhu H, Chen Z, Chong T C, Hong M 2015 Opt. Express 23 6626

    [67]

    Houston W V 1927 Phys. Rev. 29 478

    [68]

    Wu M, Huang B, Chen R, Yang Y, Wu J, Ji R, Chen X, Hong M 2015 Opt. Express 23 20096

    [69]

    Wu M, Chen R, Soh J, Shen Y, Jiao L, Wu J, Chen X, Ji R, Hong M 2016 Sci. Rep. 6 31637

    [70]

    Durnin J, Miceli Jr J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [71]

    McGloin D, Dholakia K 2005 Contem. Phys. 46 15

    [72]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [73]

    Bennett, Harold E 1988 Laser Induced Damage in Optical Materials, 1986 : Proceedings of a Symposium, NIST (formerly NBS) Boulder, Colorado, November 3-5, 1986 p707

    [74]

    Niklasson G A, Li S Y, Granqvist C G 2014 Parallel Session of the 18th International School on Condensed Matter Physics Varna, Bulgaria, September 4-6, 2014 p012001

    [75]

    Lu S, Hou L, Gan F 1993 J. Mater. Sci. 28 2169

    [76]

    Soh J H, Wu M, Gu G, Chen L, Hong M 2016 Appl. Opt. 55 3751

    [77]

    Hao X, Liu X, Kuang C, Li Y 2013 Appl. Phys. Lett. 102 013104

    [78]

    Ben-Aryeh Y 2006 Appl. Phys. B 84 121

    [79]

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207 (in Chinese) [王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]

    [80]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano Lett. 16 4862

    [81]

    Pereira A, Grojo D, Chaker M, Delaporte P, Guay D, Sentis M 2008 Small 4 572

    [82]

    Mcleod E, Arnold C B 2008 Nature Nanotech. 3 413

    [83]

    Mcleod E, Arnold C B 2009 Opt. Express 17 3640

    [84]

    Li P Y, Tsao Y, Liu Y J, Lou Z X, Lee W L, Chu S W, Chang C W 2016 Opt. Express 24 16479

    [85]

    Darafsheh A, Guardiola C, Palovcak A, Finlay J C, Cárabe A 2015 Opt. Lett. 40 5

    [86]

    Liu C, Jin L D, Ye A P 2016 Acta Phys. Sin. 53 19 (in Chinese) [刘畅, 金璐頔, 叶安培 2016 激光与光电子学进展 53 19]

    [87]

    Wang Z 2015 Nanoscience 3 193

  • [1] Wang Xiao, Pan An-Lian, Liu Dan, Bai Yong-Qiang, Zhang Zhao-Hui, Zou Bing-Suo, Zhu Xing. Near-field detected photoluminescence spectra of CdS0.65Se0.35 nanoribbon at room temperature. Acta Physica Sinica, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [2] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [3] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [4] Zhang Chao, Fang Liang, Sui Bing-Cai, Xu Qiang, Wang Hui. Nano-scale lithography and in-situ electrical measurements based on the micro-chips in a transmission electron microscope. Acta Physica Sinica, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [5] Wang Shu-Ying, Zhang Hai-Jun, Zhang Dong-Xian. Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses. Acta Physica Sinica, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [6] TANG ZHI-LIE, LIANG RUI-SHENG, CHANG HONG-SEN. THE IMAGING THEORY OF TWO-PHOTON AND MULTI-PHOTON CONFOCAL SCANNING MICROSCOPY. Acta Physica Sinica, 2000, 49(6): 1076-1080. doi: 10.7498/aps.49.1076
    [7] LI FANG-HUA. DETERMINATION OF CRYSTAL STRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1977, 26(5): 193-198. doi: 10.7498/aps.26.193
    [8] WEN SHU-LIN, FENG JING-WEI. LATTICE DEFECTS IN α-Si3N4 STUDIED BY HREM. Acta Physica Sinica, 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [9] Li Fang-hua. DETERMINATION OF CRYSTAL STRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1977, 26(3): 193-198. doi: 10.7498/aps.26.193
    [10] WANG ZHEN-XIA, HU JUN, WANG WEN-MIN, YU GUO-QING, RUAN MEI-LING. A HIGH RESOLUTION ELECTRON MICROSCOPY INVESTIGATION OF CURVATURE IN MULTILAYER GRAPHITE SHEETS. Acta Physica Sinica, 1998, 47(11): 1853-1857. doi: 10.7498/aps.47.1853
    [11] Zhao Hua-Bo, Li Zhen, Li Rui, Zhang Zhao-Hui, Zhang Yan, Liu Yu, Li Yan. Using conductive atomic force microscope on carbon nanotube networks. Acta Physica Sinica, 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
    [12] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [13] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
    [14] ZHANG XIU-MU, YANG QI-BING, CHANG XIN, GUO KE-XIN. OBSERUATION AND CALCULATION OF FRINGE IMAGES OF OVERLAPPING MICRO-TWIN BOUNDARIES. Acta Physica Sinica, 1983, 32(12): 1479-1488. doi: 10.7498/aps.32.1479
    [15] Yang Quan, Ma Li, Yang Bin, Ding Hui-Yang, Chen Tao, Yang Zhan, Sun Li-Ning, Toshio Fukuda. Method of picking up carbon nanotubes inside scanning electron microscope. Acta Physica Sinica, 2018, 67(13): 136801. doi: 10.7498/aps.67.20180347
    [16] Zhang Zhao-Xiang, Zhang Geng-Min, Hou Shi-Min, Zhang Hao, Gu Zhen-Nan, Liu Wei-Min, Zhao Xing-Yu, Xue Zeng-Quan. FEM study on the influence of oxygen on field emission of singlewalled carbon nanotubes. Acta Physica Sinica, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [17] Deng Chang-Fa, Yan Shao-An, Wang Dong, Peng Jin-Feng, Zheng Xue-Jun. Optically modulated electromechanical coupling properties of single GaN nanobelt based on conductive atomic force microscopy. Acta Physica Sinica, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [18] SHEN XIAO-QING. A STUDY ON IMAGE QUALITY DEPENDING ON DEFOCUSING HREM WITH IMAGE QUALIFICATION THEORY OF LINFOOT. Acta Physica Sinica, 1989, 38(3): 516-522. doi: 10.7498/aps.38.516
    [19] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [20] Li Wen-Yu, Huo Ge, Huang Yan, Dong Li-Juan, Lu Xue-Gang. Synthesis and superparamagnetism of Fe3O4 hollow nano-microspheres. Acta Physica Sinica, 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
  • Citation:
Metrics
  • Abstract views:  2149
  • PDF Downloads:  821
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2017
  • Accepted Date:  16 May 2017
  • Published Online:  05 July 2017

Super-resolution microscopic effect of microsphere based on the near-field optics

Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2013CBA01703), the National Natural Science Foundation of China (Grant No. 61605162), the Natural Science Foundation of Fujian Province of China (Grant No. 2017J05106), the State Key Laboratory of Optical Technology for Microfabrication of Institute of Optics and Electronics the Chinese Academy of Sciences (KFS4), and the Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian, China.

Abstract: In the field of optical imaging, the conventional imaging resolution is about 200 nm due to the diffraction limit. The higher resolution is urgently needed for further developing scientific research. Therefore, how to break through this limitation to acquire high quality and high resolution image has become a hot research topic. The microspheres with the size of tens of micrometers exhibit the ability to improve the imaging resolution of the conventional optical microscope by locating them directly on the sample surface. Due to its simplicity, the microsphere optical nanoscope technology is widely studied. This paper introduces the research background of the optical microscope and the research progress of microsphere optical nanoscope technology. At the same time, approaches to adjusting the photonic nanojet generated by the microspheres by fabricating concentric ringing, central mask, and surface coating of microspheres are reviewed. The possible reasons for this improved resolution are discussed. The applications and development of the microsphere ultra-microscopic technology in the future are discussed.

Reference (87)

Catalog

    /

    返回文章
    返回