Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method of picking up carbon nanotubes inside scanning electron microscope

Yang Quan Ma Li Yang Bin Ding Hui-Yang Chen Tao Yang Zhan Sun Li-Ning Toshio Fukuda

Citation:

Method of picking up carbon nanotubes inside scanning electron microscope

Yang Quan, Ma Li, Yang Bin, Ding Hui-Yang, Chen Tao, Yang Zhan, Sun Li-Ning, Toshio Fukuda
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper a promising method of recognizing spatial contact state between carbon nanotubes (CNTs) and atomic force microscope (AFM) probe inside scanning electron microscope (SEM) is proposed. The CNTs can be picked up simply and effectively by van der Waals force without knowing depth information of SEM images by using this method. And a micro-nanorobotic manipulation system with 16 DOFs, which allows the automatic pick-up of CNTs based on visual feedback, is presented. The micro-nanorobotic manipulators are assembled into 4 units with 4 DOFs individually. Namely, a manipulator has 4 DOFs i.e., three linear motions and a rotational motion. Manipulators are actuated by picomotors with better than 30 nm linear resolution and less than 1 micro-rad rotary resolution. The van der Waals force mechanics model between CNTs and AFM probe in the picking up manuplation is established. In reality, the van der Waals force is the main attractive force under the vacuum condition inside SEM when the influence of staticelectricity is ignored. It is shown that the van der Waals force under horizontal (sphere-plane) contact model is significantly larger with appropriate overlapping length. Though the positions in both x and y directions of the CNTs and AFM cantilever are acquired, the relative positions of those two objects in the z direction remain unclear. In the gradually ascending process of AFM cantilever to contact the CNTs, the CNTs abruptly drop on the surface of AFM probe due to the van der Waals force. According to the relative coordinate system of SEM visual feedback images, the detection of contact state between carbon nanotubes and AFM probe are completed by using the inclination changing value of fitting line. The experimental results suggest that the abrupt contact between CNTs and AFM probe happens when the inclination changing value of the regression line is found to be 3.0263. The spatial contact state between carbon nanotubes and AFM probe includes line contact (Model a) and point contact (Model b, Model c). Then the dynamic difference method is introduced to identify the spatial contact model of CNTs and AFM probe. The results demonstrate that contact model of CNTs and AFM probe is line contact when the dynamic difference is approximately zero. The position of carbon nanotubes is corrected by moving AFM cantilever automatically underneath the CNTs. The picking-up of CNTs from substrate under line contact model is completed by choosing the optimum contact angle, contact length and pickup speed.
      Corresponding author: Ma Li, malian@shu.edu.cn;chent@suda.edu.cn ; Chen Tao, malian@shu.edu.cn;chent@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573238, 61433010).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Fukuda T, Arai F, Dong L X 2003 Proc. IEEE 91 1803

    [3]

    Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦峰, 吴锦雷 2007 物理学报 56 1054]

    [4]

    Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M, Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153

    [5]

    Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q, Park H, Afzali A, Han S J, Hannon J B, Haensch W 2014 ACS Nano 8 8730

    [6]

    Liu X H, Zhao H L, Li T Y, Zhang R, Li S J, Ge C H 2013 Acta Phys. Sin. 62 147308 (in Chinese) [刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华 2013 物理学报 62 147308]

    [7]

    Fukuda T, Arai F, Dong L X 2008 Int. J. Adv. Robot. Syst. 2 264

    [8]

    Fatikow S, Eichhorn V, Stolle C, Siever S T, Jhnisch M 2008 Mechatronics 18 370

    [9]

    Ru C H, Zhang Y, Sun Y, Zhong Y, Sun X L, Hoyle D, Cotton I 2011 IEEE Trans. Nanotechnol. 10 674

    [10]

    Li G Y, Xi N, Yu M M, Fung W K 2004 IEEE Asem. T. Mech. 9 358

    [11]

    Li G Y, Xi N, Chen H P, Pomeroy C, Prokos M 2005 IEEE Trans. Nanotechnol. 4 605

    [12]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro. Nano. Lett. 11 645

    [13]

    Jhnisch M, Schiffner M 2006 Proceedings International Conference Robotics Automatio Orlando FL, United States, May 15-19, 2006 p908

    [14]

    Eichhorn V, Fatikow S, Wich T, Dahmen C, Sievers T, Andersen K N, Carlson K, Bggild P 2008 J. Micro. Nano. Mech. 4 27

    [15]

    Fatikow S, Eichhorn V, Wich T 2007 Proceedings IEEE International Conference Mechatronics Autom Harbin, China, August 5-8, 2007 p45

    [16]

    Wang Y Q, Cao J J, Yang Z, Chen T, Sun L N, Fukuda T 2016 International Conference Advanced Robotics and Mechatronics Albert, Canada, July 12-15, 2016 p288

    [17]

    Yang Z, Wang Y Q, Yang B, Li G H, Chen T, Nakajima M, Sun L N, Fukuda T 2016 Sensors 16 1479

    [18]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE Asem. T. Mech. 22 845

    [19]

    Guo H G 2011 IEEE Signal Proc. Mag. 5 134

    [20]

    Jiang F, Liu S L 2018 J. Phys. D: Appl. Phys. 12 125002

    [21]

    Wang Y Q, Yang Z, Chen T, Lijun Yang, Sun L N, Fukuda T 2016 Proceedings of the 11th IEEE Annual InternationalConference on Nano/Micro Engineered and Molecular Systems (NEMS) Matsushima Bay and Sendai MEMS City, Japan, April 17-20, 2016 p111

    [22]

    Ding H Y, Shi C Y, Ma L, Yang Z, Wang M Y, Wang Y Q, Chen T, Sun L N, Fukuda T 2018 Sensors 18 1137

    [23]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 1 5910734

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Fukuda T, Arai F, Dong L X 2003 Proc. IEEE 91 1803

    [3]

    Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦峰, 吴锦雷 2007 物理学报 56 1054]

    [4]

    Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M, Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153

    [5]

    Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q, Park H, Afzali A, Han S J, Hannon J B, Haensch W 2014 ACS Nano 8 8730

    [6]

    Liu X H, Zhao H L, Li T Y, Zhang R, Li S J, Ge C H 2013 Acta Phys. Sin. 62 147308 (in Chinese) [刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华 2013 物理学报 62 147308]

    [7]

    Fukuda T, Arai F, Dong L X 2008 Int. J. Adv. Robot. Syst. 2 264

    [8]

    Fatikow S, Eichhorn V, Stolle C, Siever S T, Jhnisch M 2008 Mechatronics 18 370

    [9]

    Ru C H, Zhang Y, Sun Y, Zhong Y, Sun X L, Hoyle D, Cotton I 2011 IEEE Trans. Nanotechnol. 10 674

    [10]

    Li G Y, Xi N, Yu M M, Fung W K 2004 IEEE Asem. T. Mech. 9 358

    [11]

    Li G Y, Xi N, Chen H P, Pomeroy C, Prokos M 2005 IEEE Trans. Nanotechnol. 4 605

    [12]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro. Nano. Lett. 11 645

    [13]

    Jhnisch M, Schiffner M 2006 Proceedings International Conference Robotics Automatio Orlando FL, United States, May 15-19, 2006 p908

    [14]

    Eichhorn V, Fatikow S, Wich T, Dahmen C, Sievers T, Andersen K N, Carlson K, Bggild P 2008 J. Micro. Nano. Mech. 4 27

    [15]

    Fatikow S, Eichhorn V, Wich T 2007 Proceedings IEEE International Conference Mechatronics Autom Harbin, China, August 5-8, 2007 p45

    [16]

    Wang Y Q, Cao J J, Yang Z, Chen T, Sun L N, Fukuda T 2016 International Conference Advanced Robotics and Mechatronics Albert, Canada, July 12-15, 2016 p288

    [17]

    Yang Z, Wang Y Q, Yang B, Li G H, Chen T, Nakajima M, Sun L N, Fukuda T 2016 Sensors 16 1479

    [18]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE Asem. T. Mech. 22 845

    [19]

    Guo H G 2011 IEEE Signal Proc. Mag. 5 134

    [20]

    Jiang F, Liu S L 2018 J. Phys. D: Appl. Phys. 12 125002

    [21]

    Wang Y Q, Yang Z, Chen T, Lijun Yang, Sun L N, Fukuda T 2016 Proceedings of the 11th IEEE Annual InternationalConference on Nano/Micro Engineered and Molecular Systems (NEMS) Matsushima Bay and Sendai MEMS City, Japan, April 17-20, 2016 p111

    [22]

    Ding H Y, Shi C Y, Ma L, Yang Z, Wang M Y, Wang Y Q, Chen T, Sun L N, Fukuda T 2018 Sensors 18 1137

    [23]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 1 5910734

  • [1] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] Lin Yi-Ni, Ma Li, Yang Quan, Geng Song-Chao, Ye Mao-Sheng, Chen Tao, Sun Li-Ning. Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2022, 71(2): 027301. doi: 10.7498/aps.71.20211370
    [3] Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211370
    [4] Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface. Acta Physica Sinica, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [5] Ma Yu-Long, Xiang Wei, Jin Da-Zhi, Chen Lei, Yao Ze-En, Wang Qi-Long. Field evaporation behaviour for carbon nanotube thin-film. Acta Physica Sinica, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [6] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [7] Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [8] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [9] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [10] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [11] Liu Hong, Yin Hai-Jian, Xia Shu-Ning. Electrical properties of the deformed carbon nanotube field-effect transistors. Acta Physica Sinica, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
    [12] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [13] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [14] Bai Xin, Wang Ming-Sheng, Liu Yang, Zhang Geng-Min, Zhang Zhao-Xiang, Zhao Xing-Yu, Guo Deng-Zhu, Xue Zeng-Quan. Field evaporation of the end of a carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [15] Guo Da-Bo, Yuan Guang, Song Cui-Hua, Gu Chang-Zhi, Wang Qiang. Field emission of carbon nanotubes. Acta Physica Sinica, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [16] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [17] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [18] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. The influence of contact metal in carbon nanotube transistor. Acta Physica Sinica, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [19] Zhao Dong-Lin, Zeng Xian-Wei, Shen Zeng-Min. Synthesis of carbon nanotube/polyaniline composite nanotube and its microwave permittivity. Acta Physica Sinica, 2005, 54(8): 3878-3883. doi: 10.7498/aps.54.3878
    [20] Wang Feng, Zeng Xiang-Hua, Xu Xiu-Lian. . Acta Physica Sinica, 2002, 51(8): 1778-1783. doi: 10.7498/aps.51.1778
Metrics
  • Abstract views:  5704
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2018
  • Accepted Date:  19 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回