Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composite electromagnetic scattering from a ship located on one-dimensional sea surface with time-domain hybrid method

Wang Qiang Guo Li-Xin

Composite electromagnetic scattering from a ship located on one-dimensional sea surface with time-domain hybrid method

Wang Qiang, Guo Li-Xin
PDF
Get Citation
  • With the development of broadband radar technology, transient composite scattering from a target and a randomly rough surface has aroused a great interest in oceanic remote sensing, target identification, and military applications. Time-domain integral equation (TDIE) is an effective numerical method of analyzing transient and broadband electromagnetic problems. However, the high computational complexity of numerical methods restricts its applications in analyzing the electrically large rough surfaces. To improve computational efficiency, hybrid methods have been developed by combining an analytical method with a numerical algorithm, and used to solve the electromagnetic scattering of a composite model. In these hybrid methods, numerical methods are used to calculate the scattering from a target, and analytical methods are employed to solve the scattering from a rough surface. To our knowledge, most of the hybrid methods for composite electromagnetic scattering are frequency-domain algorithms and used to investigate composite scattering from a rough surface with a target above it. Few papers have been published on the analysis of transient scattering from a rough surface with a target by using the time-domain hybrid methods. In the present paper, an efficient time-domain hybrid method that combines time-domain Kirchhoff approximation (TDKA) with TDIE is first designed to investigate the transient electromagnetic scattering from a ship located on a randomly rough sea surface. In this hybrid method, the ship and its adjacent sea surface are chosen as TDIE region and the rest of the rough surface is TDKA region. Considering the interactions between the TDIE region and the TDKA region, the hybrid TDIE-TDKA formula is derived and solved with an iterated marching-on-in-time method. Initially, the induced currents of the TDIE region are acquired by solving TDIE. Then, the currents in the TDKA region are obtained via TDKA method. The interactions between the currents in the TDKA region are neglected. The efficiency and accuracy of the hybrid TDIE-TDKA method depend on the size of the TDIE region. The minimum length of sea surface in the TDIE region is at least the size of the ship due to the strong interactions between the ship and its adjacent sea surface. Numerical results show that the hybrid TDIE-TDKA method presented in this paper is accurate and efficient compared with the full TDIE. Moreover, the influences of the ship size, the wind speed, the incident angle, and the depth of the ship immersing in sea surface on the backscattered far magnetic field are discussed in detail.
      Corresponding author: Guo Li-Xin, lxguo@xidian.edu.cn
    • Funds: Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61621005), the National Natural Science Foundation of China (Grant No. 61431010), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 15JK1180).
    [1]

    Holliday D 1987 IEEE Trans. Antennas Propag. 35 120

    [2]

    Voronovich A 1994 Waves Random Media 4 337

    [3]

    Winebrenner D, Ishimaru A 1985 Radio Sci. 20 161

    [4]

    Lentz R R 1974 Radio Sci. 9 1139

    [5]

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301(in Chinese)[徐润汶, 郭立新, 范天奇2013物理学报 62 170301]

    [6]

    Li J, Guo L X, Zeng H 2008 Waves Random Media 18 641

    [7]

    Wang R, Guo L X, Li J, Liu X Y 2009 Sci. China G:Phys. Mech. Astron. 52 665

    [8]

    Wang R, Guo L X, Ma J, Wu Z S 2009 Chin. Phys. B 18 1503

    [9]

    He S Y, Zhu G Q 2007 Microw. Opt. Technol. Lett. 49 2957

    [10]

    Li J, Guo L X, He Q 2011 Electron. Lett. 47 1147

    [11]

    Qin S T, Guo L X, Dai S Y, Gong S X 2011 Acta Phys. Sin. 60 074217(in Chinese)[秦三团, 郭立新, 代少玉, 龚书喜2011物理学报 60 074217]

    [12]

    Li J, Guo L X, Jiao Y C, Li K 2011 Opt. Express 19 1091

    [13]

    Yang L X, Ge D B, Wei B 2007 Prog. Electromagn. Res. 76 275

    [14]

    Walker S P, Vartiainen M J 1998 IEEE Trans. Antennas Propag. 46 318

    [15]

    Ren M, Zhou D M, Li Y, He J G 2008 Electron. Lett. 44 258

    [16]

    Qin Y, Zhou D, He J, Liu P 2009 Prog. Electromagn. Res. M 8 153

    [17]

    Qin S T, Gong S X, Wang R, Guo L X 2010 Prog. Electromagn. Res. 102 181

    [18]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 1103

    [19]

    Rao S M, Wilton D R 1991 IEEE Trans. Antennas Propag. 39 56

    [20]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 661

    [21]

    Kuga Y, Phu P 1996 Prog. Electromagn. Res. 14 37

    [22]

    Li J, Wei B, He Q, Guo L X, Ge D B 2011 Prog. Electromagn. Res. 121 391

  • [1]

    Holliday D 1987 IEEE Trans. Antennas Propag. 35 120

    [2]

    Voronovich A 1994 Waves Random Media 4 337

    [3]

    Winebrenner D, Ishimaru A 1985 Radio Sci. 20 161

    [4]

    Lentz R R 1974 Radio Sci. 9 1139

    [5]

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301(in Chinese)[徐润汶, 郭立新, 范天奇2013物理学报 62 170301]

    [6]

    Li J, Guo L X, Zeng H 2008 Waves Random Media 18 641

    [7]

    Wang R, Guo L X, Li J, Liu X Y 2009 Sci. China G:Phys. Mech. Astron. 52 665

    [8]

    Wang R, Guo L X, Ma J, Wu Z S 2009 Chin. Phys. B 18 1503

    [9]

    He S Y, Zhu G Q 2007 Microw. Opt. Technol. Lett. 49 2957

    [10]

    Li J, Guo L X, He Q 2011 Electron. Lett. 47 1147

    [11]

    Qin S T, Guo L X, Dai S Y, Gong S X 2011 Acta Phys. Sin. 60 074217(in Chinese)[秦三团, 郭立新, 代少玉, 龚书喜2011物理学报 60 074217]

    [12]

    Li J, Guo L X, Jiao Y C, Li K 2011 Opt. Express 19 1091

    [13]

    Yang L X, Ge D B, Wei B 2007 Prog. Electromagn. Res. 76 275

    [14]

    Walker S P, Vartiainen M J 1998 IEEE Trans. Antennas Propag. 46 318

    [15]

    Ren M, Zhou D M, Li Y, He J G 2008 Electron. Lett. 44 258

    [16]

    Qin Y, Zhou D, He J, Liu P 2009 Prog. Electromagn. Res. M 8 153

    [17]

    Qin S T, Gong S X, Wang R, Guo L X 2010 Prog. Electromagn. Res. 102 181

    [18]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 1103

    [19]

    Rao S M, Wilton D R 1991 IEEE Trans. Antennas Propag. 39 56

    [20]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 661

    [21]

    Kuga Y, Phu P 1996 Prog. Electromagn. Res. 14 37

    [22]

    Li J, Wei B, He Q, Guo L X, Ge D B 2011 Prog. Electromagn. Res. 121 391

  • [1] Zhang Shi, Wang Pan, Zhang Rui-Hao, Chen Hong. A new method for selecting arbitrary Poincare section. Acta Physica Sinica, 2020, 69(4): 040503. doi: 10.7498/aps.69.20191585
    [2] Calibration source for OH radical based on synchronous photolysis. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200153
    [3] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
    [4] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [5] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [6] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [7] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  223
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2017
  • Accepted Date:  03 June 2017
  • Published Online:  20 September 2017

Composite electromagnetic scattering from a ship located on one-dimensional sea surface with time-domain hybrid method

    Corresponding author: Guo Li-Xin, lxguo@xidian.edu.cn
  • 1. School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
  • 2. Department of Computer and Electronic Information, Shaanxi Xueqian Normal University, Xi'an 710100, China
Fund Project:  Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61621005), the National Natural Science Foundation of China (Grant No. 61431010), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 15JK1180).

Abstract: With the development of broadband radar technology, transient composite scattering from a target and a randomly rough surface has aroused a great interest in oceanic remote sensing, target identification, and military applications. Time-domain integral equation (TDIE) is an effective numerical method of analyzing transient and broadband electromagnetic problems. However, the high computational complexity of numerical methods restricts its applications in analyzing the electrically large rough surfaces. To improve computational efficiency, hybrid methods have been developed by combining an analytical method with a numerical algorithm, and used to solve the electromagnetic scattering of a composite model. In these hybrid methods, numerical methods are used to calculate the scattering from a target, and analytical methods are employed to solve the scattering from a rough surface. To our knowledge, most of the hybrid methods for composite electromagnetic scattering are frequency-domain algorithms and used to investigate composite scattering from a rough surface with a target above it. Few papers have been published on the analysis of transient scattering from a rough surface with a target by using the time-domain hybrid methods. In the present paper, an efficient time-domain hybrid method that combines time-domain Kirchhoff approximation (TDKA) with TDIE is first designed to investigate the transient electromagnetic scattering from a ship located on a randomly rough sea surface. In this hybrid method, the ship and its adjacent sea surface are chosen as TDIE region and the rest of the rough surface is TDKA region. Considering the interactions between the TDIE region and the TDKA region, the hybrid TDIE-TDKA formula is derived and solved with an iterated marching-on-in-time method. Initially, the induced currents of the TDIE region are acquired by solving TDIE. Then, the currents in the TDKA region are obtained via TDKA method. The interactions between the currents in the TDKA region are neglected. The efficiency and accuracy of the hybrid TDIE-TDKA method depend on the size of the TDIE region. The minimum length of sea surface in the TDIE region is at least the size of the ship due to the strong interactions between the ship and its adjacent sea surface. Numerical results show that the hybrid TDIE-TDKA method presented in this paper is accurate and efficient compared with the full TDIE. Moreover, the influences of the ship size, the wind speed, the incident angle, and the depth of the ship immersing in sea surface on the backscattered far magnetic field are discussed in detail.

Reference (22)

Catalog

    /

    返回文章
    返回