Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of graphene radio frequency devices

Lu Qi Lyu Hong-Ming Wu Xiao-Ming Wu Hua-Qiang Qian He

Research progress of graphene radio frequency devices

Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He
PDF
Get Citation
  • Graphene, the first realized two-dimensional material, has received much attention in electronic applications in recent years. With ultra-high carrier mobility and one atom thick structure, graphene becomes a promising semiconductor candidate for solving the problem of short channel effect in nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET), and exploring its applications in radio frequency devices. How to develop the advantages of graphene transistor in radio frequency is an attractive research area. The first step is to obtain high quality graphene material. In this article we summarize the graphene growth methods commonly used in electronic field, including chemical vapor deposition on metal substrates and epitaxial method on wide bandgap semiconductor and insulator substrates. Another key factor to improve graphene transistor performance is to carefully design the device structure and process flow. Multi-finger gate and T-shaped gate are widely used in MOSFET. These two structures can significantly reduce gate resistance, and result in a better radio frequency performance. Inverted process is introduced for graphene FET fabrication, which is compatible with silicon-based back-end-of-line technology. It can reduce the damages to graphene during fabrication. Another improved self-aligned gate deposition process can lead to a good gate coupling and less parasitic parameters. These newly developed process play a prominent part in increasing the cut-off frequency and maximum oscillation frequency of graphene radio frequency devices. In addition, single crystal graphene is helpful in eliminating carriers scattering and improving the radio frequency properties of graphene transistor. So far, the highest cut-off frequency of graphene transistor reaches over 300 GHz by a few groups, but the maximum oscillation frequency remains low. Record-high maximum oscillation frequency is 200 GHz when gate length is 60 nm. Further improvement of maximum oscillation frequency needs to be tried out. Several graphene radio frequency circuits are also discussed in the paper. Some of the circuits have similar structures to silicon-based circuits, and others are designed based on the unique property of graphene transistor, like ambipolar transport properties. The new concept circuits have simpler structures than conventional circuits. With the rapid development of graphene growth and related integrating technology, the potential to use graphene in radio frequency field will be further increased.
      Corresponding author: Qian He, qianh@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01604), the National Natural Science Foundation of China (Grant Nos. 61377106, 61474072), and the Natural Science Foundation of Beijing, China (Grant No. 4162031).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2009 Nat. Mater. 6 183

    [3]

    Schwierz F 2007 Nat. Nanotechnol. 5 487

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A, Coleman J 2008 Nat. Nanotechnol. 3 563

    [6]

    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prudhomme R, Car R, Saville D, Aksay I 2006 J. Phys. Chem. B 110 8535

    [7]

    Segal M 2009 Nat. Nanotechnol. 4 612

    [8]

    Forti S, Emtsev K V, Coletti C, Zakharov A A, Riedl C, Starke U 2008 Phys. Rev. B 78 245403

    [9]

    Forbeaux I, Themlin J M, Debever J M 1998 Phys. Rev. B 58 16396

    [10]

    Yu C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 物理学报 63 038102]

    [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Riner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312

    [12]

    Bae S, Kim H, Lee Y, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H, Song Y, Kim Y, Kim K, Kim K, Ozyilmaz B, Ahn J, Hong B, Iijima S 2010 Nat. Nanotechnol. 5 574

    [13]

    Xiao K, Wu H, L H, Wu X, Qian H 2013 Nanoscale 5 5524

    [14]

    Novoselov K S, Fal V I, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [15]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W 2012 J. Am. Chem. Soc. 134 3627

    [16]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [17]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [18]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Functional Mater. 23 198

    [19]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Rouff R 2013 Adv. Mater. 25 2062

    [20]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [21]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930

    [22]

    Yu C, Liu Q, Li J, Lu W, He Z, Cai S, Feng Z 2014 Appl. Phys. Lett. 105 183105

    [23]

    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z 2014 J. Am. Chem. Soc. 136 6574

    [24]

    Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M, Ma D, Song X, Wu X, Xiong C, Rummeli M, Ding F, Zhang Y, Liu Z 2015 Adv. Mater. 27 7839

    [25]

    Cai T, Jia Z, Yan B, Yu D, Wu X 2015 Appl. Phys. Lett. 106 013106

    [26]

    Ding X, Ding G, Xie X, Huang F, Jiang M 2011 Carbon 49 2522

    [27]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329

    [28]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519

    [29]

    Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z 2015 Nat. Commun. 6 6835

    [30]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201

    [31]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Chen H, Ren W 2017 Nat. Commun. 8 14560

    [32]

    Yun W, Zou X, Sun M, Cao Z, Wang X, Shuai H, Zhou J, Ynag Y, Yu X, Kong Y, Yu G, Liao L, Chen T 2016 ACS Appl. Mater. Interfaces 8 25645

    [33]

    Lu N D, Wang L F, Li L, Liu M 2017 Chin. Phys. B 26 036804

    [34]

    Zheng J, Lu W, Ruge Q, Liu Q, Hong L, Yu D, Mei W, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [35]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nat. Nanotech. 3 653

    [36]

    Wang H, Hus A, Kong J, Antoniadis D A, Palacios T 2011 IEEE Trans. Electron Dev. 58 1523

    [37]

    Frgonese S, Magallo M, Maneux C, Happy H, Zimmer T 2013 IEEE Trans. Nanotech. 12 539

    [38]

    Zhu W N, Linghu C, Zhang J, Zhang L, Yu Z 2012 SISPAD Denver, CO, USA September 5-7, 2012 pp79-82

    [39]

    Scott B W, Leburton J P 2011 IEEE Trans. Nanotech. 10 1113

    [40]

    Zhu R, Zhang Y, Luo J, Chang S, Wang H, Huang Q, He J 2015 Key Eng. Mater. 645-646 139

    [41]

    L H, Lu Q, Huang Y, Ma T, Zhang J, Wu X, Yu Z, Ren W, Cheng H, Wu H, Qian H 2015 Sci. Rep. 5 17649

    [42]

    Han S J, Oida S, Jenkins K A, Lu D, Zhu Y 2013 IEEE Electron Dev. Lett. 34 1340

    [43]

    Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A, Haensch W 2011 Nano Lett. 11 3690

    [44]

    Peng S, Jin Z, Zhang D, Shi J, Wang X, Wang S, Li M, Liu X, Yu G 2015 Appl. Phys. Lett. 106 033503

    [45]

    Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J, Cai S 2014 Carbon 75 249

    [46]

    Wu Y, Ma Z F, Du L, Zhang P, He L 2015 Mater. Sci. Forum 815 36

    [47]

    Han S J, Valdes-Garcia A, Bol A A, Franklin A D 2011 IEEE Electron Dev. Meeting 326 pp.2.2.1-2.2.4

    [48]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [49]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [50]

    Lyu H, Qi L, Liu J, Wu X, Zhang J, Li J, Niu J, Yu Z, Wu H, Qian H 2016 Sci. Rep. 6 35717

    [51]

    Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G, Feng Z H 2014 Chin. Phys. Lett. 31 078104

    [52]

    Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [53]

    Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J, Feng Z 2016 Appl. Phys. Lett. 108 013102

    [54]

    He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H, Cai S J 2016 Chin. Phys. Lett. 33 086801

    [55]

    Wu Y, Jenkins K A, Valdesgarcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin Y 2012 Nano Lett. 12 3062

    [56]

    Islam M R, Haque M A, Fahim-Al-Fattah M, Alam M N K, Islam M R 2016 International Conference on Informatics, Electronics and Vision Dhaka, Bangladesh, May 13-14, 2016 pp21-25

    [57]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [58]

    Smith J T, Franklin A D, Farmer D B, Dimitrakopoulos C D 2013 ACS Nano 7 3661

    [59]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K, Dean C 2013 Science 342 614

    [60]

    Song S M, Kim T Y, Jae Sul O, Cheol Shin W 2014 Appl. Phys. Lett. 104 183506

    [61]

    Kwon T, An H, Seo Y S, Jung J 2012 Jpn. J. Appl. Phys. 51 638

    [62]

    Gahng S, Chang H R, Yu J C, Kim J A, Kim T, Yoo W J 2014 Appl. Phys. Lett. 104 223110

    [63]

    Robinson J A, Labella M, Zhu M, Hollander M 2011 Appl. Phys. Lett. 98 053103

    [64]

    Wei S L, Chang T N, Thong J T L 2014 Nano Lett. 14 3840

    [65]

    Li W, Liang Y, Yu D, Peng L 2013 Appl. Phys. Lett. 102 183110

    [66]

    Li W, Hacker C A, Cheng G, Liang Y 2014 J. Appl. Phys. 115 487

    [67]

    Liang Y, Liang X, Zhang Z, Li W, Huo X, Peng L 2015 Nanoscale 7 10954

    [68]

    Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y, Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588

    [69]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K, Huang Y, Duan X 2010 Nature 467 305

    [70]

    Lin Y M, Jenkins K A, Valdesgarcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [71]

    Meric I, Baklitskaya N, Kim P, Shepard K L 2008 IEEE Int. Electron Dev. Meeting San Francisco, CA, USA, December 15-17, 2008 pp1-4

    [72]

    Meric I, Dean C R, Han S J, Wang L 2011 Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 pp2.1.1-2.1.4

    [73]

    Dimitrakopoulos C, Lin Y M, Grill A, Farmer D B 2010 J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 28 985

    [74]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [75]

    Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J, Berger C, Heer W 2013 Nano Lett. 13 942

    [76]

    Badmaev A, Che Y, Li Z, Wang C, Zhou C 2012 ACS Nano 6 3371

    [77]

    Han S J, Garcia A V, Oida S, Jenkins K A 2013 IEEE Int. Electron Dev. Meeting Washington, DC, USA, December 9-11, 2013 pp19.9.1-19.9.3

    [78]

    Wu Y, Lin Y, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [79]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [80]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [81]

    Lyu H, Wu H, Liu J, Lu Q, Zhang J, Wu X, Li J, Ma T, Niu J, Ren W, Cheng H, Yu Z, Qian H 2015 Nano Lett. 15 6677

    [82]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [83]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M 2008 Nat. Mater. 7 151

    [84]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K 2008 Nat. Nanotechnol. 3 654

    [85]

    Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N, Nuckolls C, Kim P, Shepard K 2011 Nano Lett. 11 1093

    [86]

    Dorgan V E, Bae M H, Pop E 2010 Appl. Phys. Lett. 97 082112

    [87]

    Pozar D M 1990 Microwave Engineering (MA: Addison-Wesley)

    [88]

    Yu C, He Z Z, Liu Q B, Song X B, Xu P, Han T T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [89]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074

    [90]

    Yu W C, Chen X F, Hu X B, Xu X G 2016 J. Synthetic Crystals 45 1 (in Chinese) [郁万成, 陈秀芳, 胡小波, 徐现刚 2016 人工晶体学报 45 1]

    [91]

    Chen X, Wu B, Liu Y 2016 Chem. Soc. Rev. 45 2057

    [92]

    Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [93]

    Leong W S, Gong H, Thong J T 2014 ACS Nano 8 994

    [94]

    Park H Y, Jung W S, Kang D H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H, Shin B, Lee S, Park J 2016 Adv. Mater. 28 864

    [95]

    Cheng C, Huang B, Liu J, Zhang Z 2016 IEEE Electron Dev. Lett. 37 1

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2009 Nat. Mater. 6 183

    [3]

    Schwierz F 2007 Nat. Nanotechnol. 5 487

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A, Coleman J 2008 Nat. Nanotechnol. 3 563

    [6]

    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prudhomme R, Car R, Saville D, Aksay I 2006 J. Phys. Chem. B 110 8535

    [7]

    Segal M 2009 Nat. Nanotechnol. 4 612

    [8]

    Forti S, Emtsev K V, Coletti C, Zakharov A A, Riedl C, Starke U 2008 Phys. Rev. B 78 245403

    [9]

    Forbeaux I, Themlin J M, Debever J M 1998 Phys. Rev. B 58 16396

    [10]

    Yu C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 物理学报 63 038102]

    [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Riner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312

    [12]

    Bae S, Kim H, Lee Y, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H, Song Y, Kim Y, Kim K, Kim K, Ozyilmaz B, Ahn J, Hong B, Iijima S 2010 Nat. Nanotechnol. 5 574

    [13]

    Xiao K, Wu H, L H, Wu X, Qian H 2013 Nanoscale 5 5524

    [14]

    Novoselov K S, Fal V I, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [15]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W 2012 J. Am. Chem. Soc. 134 3627

    [16]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [17]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [18]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Functional Mater. 23 198

    [19]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Rouff R 2013 Adv. Mater. 25 2062

    [20]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [21]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930

    [22]

    Yu C, Liu Q, Li J, Lu W, He Z, Cai S, Feng Z 2014 Appl. Phys. Lett. 105 183105

    [23]

    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z 2014 J. Am. Chem. Soc. 136 6574

    [24]

    Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M, Ma D, Song X, Wu X, Xiong C, Rummeli M, Ding F, Zhang Y, Liu Z 2015 Adv. Mater. 27 7839

    [25]

    Cai T, Jia Z, Yan B, Yu D, Wu X 2015 Appl. Phys. Lett. 106 013106

    [26]

    Ding X, Ding G, Xie X, Huang F, Jiang M 2011 Carbon 49 2522

    [27]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329

    [28]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519

    [29]

    Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z 2015 Nat. Commun. 6 6835

    [30]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201

    [31]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Chen H, Ren W 2017 Nat. Commun. 8 14560

    [32]

    Yun W, Zou X, Sun M, Cao Z, Wang X, Shuai H, Zhou J, Ynag Y, Yu X, Kong Y, Yu G, Liao L, Chen T 2016 ACS Appl. Mater. Interfaces 8 25645

    [33]

    Lu N D, Wang L F, Li L, Liu M 2017 Chin. Phys. B 26 036804

    [34]

    Zheng J, Lu W, Ruge Q, Liu Q, Hong L, Yu D, Mei W, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [35]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nat. Nanotech. 3 653

    [36]

    Wang H, Hus A, Kong J, Antoniadis D A, Palacios T 2011 IEEE Trans. Electron Dev. 58 1523

    [37]

    Frgonese S, Magallo M, Maneux C, Happy H, Zimmer T 2013 IEEE Trans. Nanotech. 12 539

    [38]

    Zhu W N, Linghu C, Zhang J, Zhang L, Yu Z 2012 SISPAD Denver, CO, USA September 5-7, 2012 pp79-82

    [39]

    Scott B W, Leburton J P 2011 IEEE Trans. Nanotech. 10 1113

    [40]

    Zhu R, Zhang Y, Luo J, Chang S, Wang H, Huang Q, He J 2015 Key Eng. Mater. 645-646 139

    [41]

    L H, Lu Q, Huang Y, Ma T, Zhang J, Wu X, Yu Z, Ren W, Cheng H, Wu H, Qian H 2015 Sci. Rep. 5 17649

    [42]

    Han S J, Oida S, Jenkins K A, Lu D, Zhu Y 2013 IEEE Electron Dev. Lett. 34 1340

    [43]

    Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A, Haensch W 2011 Nano Lett. 11 3690

    [44]

    Peng S, Jin Z, Zhang D, Shi J, Wang X, Wang S, Li M, Liu X, Yu G 2015 Appl. Phys. Lett. 106 033503

    [45]

    Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J, Cai S 2014 Carbon 75 249

    [46]

    Wu Y, Ma Z F, Du L, Zhang P, He L 2015 Mater. Sci. Forum 815 36

    [47]

    Han S J, Valdes-Garcia A, Bol A A, Franklin A D 2011 IEEE Electron Dev. Meeting 326 pp.2.2.1-2.2.4

    [48]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [49]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [50]

    Lyu H, Qi L, Liu J, Wu X, Zhang J, Li J, Niu J, Yu Z, Wu H, Qian H 2016 Sci. Rep. 6 35717

    [51]

    Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G, Feng Z H 2014 Chin. Phys. Lett. 31 078104

    [52]

    Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [53]

    Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J, Feng Z 2016 Appl. Phys. Lett. 108 013102

    [54]

    He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H, Cai S J 2016 Chin. Phys. Lett. 33 086801

    [55]

    Wu Y, Jenkins K A, Valdesgarcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin Y 2012 Nano Lett. 12 3062

    [56]

    Islam M R, Haque M A, Fahim-Al-Fattah M, Alam M N K, Islam M R 2016 International Conference on Informatics, Electronics and Vision Dhaka, Bangladesh, May 13-14, 2016 pp21-25

    [57]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [58]

    Smith J T, Franklin A D, Farmer D B, Dimitrakopoulos C D 2013 ACS Nano 7 3661

    [59]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K, Dean C 2013 Science 342 614

    [60]

    Song S M, Kim T Y, Jae Sul O, Cheol Shin W 2014 Appl. Phys. Lett. 104 183506

    [61]

    Kwon T, An H, Seo Y S, Jung J 2012 Jpn. J. Appl. Phys. 51 638

    [62]

    Gahng S, Chang H R, Yu J C, Kim J A, Kim T, Yoo W J 2014 Appl. Phys. Lett. 104 223110

    [63]

    Robinson J A, Labella M, Zhu M, Hollander M 2011 Appl. Phys. Lett. 98 053103

    [64]

    Wei S L, Chang T N, Thong J T L 2014 Nano Lett. 14 3840

    [65]

    Li W, Liang Y, Yu D, Peng L 2013 Appl. Phys. Lett. 102 183110

    [66]

    Li W, Hacker C A, Cheng G, Liang Y 2014 J. Appl. Phys. 115 487

    [67]

    Liang Y, Liang X, Zhang Z, Li W, Huo X, Peng L 2015 Nanoscale 7 10954

    [68]

    Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y, Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588

    [69]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K, Huang Y, Duan X 2010 Nature 467 305

    [70]

    Lin Y M, Jenkins K A, Valdesgarcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [71]

    Meric I, Baklitskaya N, Kim P, Shepard K L 2008 IEEE Int. Electron Dev. Meeting San Francisco, CA, USA, December 15-17, 2008 pp1-4

    [72]

    Meric I, Dean C R, Han S J, Wang L 2011 Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 pp2.1.1-2.1.4

    [73]

    Dimitrakopoulos C, Lin Y M, Grill A, Farmer D B 2010 J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 28 985

    [74]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [75]

    Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J, Berger C, Heer W 2013 Nano Lett. 13 942

    [76]

    Badmaev A, Che Y, Li Z, Wang C, Zhou C 2012 ACS Nano 6 3371

    [77]

    Han S J, Garcia A V, Oida S, Jenkins K A 2013 IEEE Int. Electron Dev. Meeting Washington, DC, USA, December 9-11, 2013 pp19.9.1-19.9.3

    [78]

    Wu Y, Lin Y, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [79]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [80]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [81]

    Lyu H, Wu H, Liu J, Lu Q, Zhang J, Wu X, Li J, Ma T, Niu J, Ren W, Cheng H, Yu Z, Qian H 2015 Nano Lett. 15 6677

    [82]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [83]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M 2008 Nat. Mater. 7 151

    [84]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K 2008 Nat. Nanotechnol. 3 654

    [85]

    Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N, Nuckolls C, Kim P, Shepard K 2011 Nano Lett. 11 1093

    [86]

    Dorgan V E, Bae M H, Pop E 2010 Appl. Phys. Lett. 97 082112

    [87]

    Pozar D M 1990 Microwave Engineering (MA: Addison-Wesley)

    [88]

    Yu C, He Z Z, Liu Q B, Song X B, Xu P, Han T T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [89]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074

    [90]

    Yu W C, Chen X F, Hu X B, Xu X G 2016 J. Synthetic Crystals 45 1 (in Chinese) [郁万成, 陈秀芳, 胡小波, 徐现刚 2016 人工晶体学报 45 1]

    [91]

    Chen X, Wu B, Liu Y 2016 Chem. Soc. Rev. 45 2057

    [92]

    Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [93]

    Leong W S, Gong H, Thong J T 2014 ACS Nano 8 994

    [94]

    Park H Y, Jung W S, Kang D H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H, Shin B, Lee S, Park J 2016 Adv. Mater. 28 864

    [95]

    Cheng C, Huang B, Liu J, Zhang Z 2016 IEEE Electron Dev. Lett. 37 1

  • [1] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [2] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Analysis on the cutoff frequency of high order harmonic generation in the crystal. Acta Physica Sinica, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [3] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [4] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [5] Wang Zhi-Jiang, Xu Yue-Min, Zhao Guo-Wei, Liang Zhi-Wei, Xu Jie. Numerical simulation of plasma nonlinear phenomena excited by radio-frequency wave using FDTD method. Acta Physica Sinica, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [6] Yang Lin-An, Zhang Yi-Men, Gong Ren-Xi, Zhang Yu-Ming. . Acta Physica Sinica, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [7] Bai Yu-Rong, Xu Jing-Ping, Liu Lu, Fan Min-Min, Huang Yong, Cheng Zhi-Xiang. Modeling on drain current of high-k gate dielectric fully-depleted nanoscale germanium-on-insulator p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [8] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [9] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [10] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [11] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [12] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [13] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [14] Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui. Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Acta Physica Sinica, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [15] Cheng Zheng-Fu, Zheng Rui-Lun. Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene. Acta Physica Sinica, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [16] Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi. Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET. Acta Physica Sinica, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [17] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [18] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [19] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [20] Li Qiao-Qiao, Zhang Xin, Wu Jiang-Bin, Lu Yan, Tan Ping-Heng, Feng Zhi-Hong, Li Jia, Wei Cui, Liu Qing-Bin. The second-order combination Raman modes of bilayer graphene in the range of 1800-2150 cm-1. Acta Physica Sinica, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
  • Citation:
Metrics
  • Abstract views:  277
  • PDF Downloads:  355
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2017
  • Accepted Date:  04 August 2017
  • Published Online:  05 November 2017

Research progress of graphene radio frequency devices

    Corresponding author: Qian He, qianh@mail.tsinghua.edu.cn
  • 1. Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
  • 2. Rice University, Houston, TX 77005, USA;
  • 3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2013CBA01604), the National Natural Science Foundation of China (Grant Nos. 61377106, 61474072), and the Natural Science Foundation of Beijing, China (Grant No. 4162031).

Abstract: Graphene, the first realized two-dimensional material, has received much attention in electronic applications in recent years. With ultra-high carrier mobility and one atom thick structure, graphene becomes a promising semiconductor candidate for solving the problem of short channel effect in nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET), and exploring its applications in radio frequency devices. How to develop the advantages of graphene transistor in radio frequency is an attractive research area. The first step is to obtain high quality graphene material. In this article we summarize the graphene growth methods commonly used in electronic field, including chemical vapor deposition on metal substrates and epitaxial method on wide bandgap semiconductor and insulator substrates. Another key factor to improve graphene transistor performance is to carefully design the device structure and process flow. Multi-finger gate and T-shaped gate are widely used in MOSFET. These two structures can significantly reduce gate resistance, and result in a better radio frequency performance. Inverted process is introduced for graphene FET fabrication, which is compatible with silicon-based back-end-of-line technology. It can reduce the damages to graphene during fabrication. Another improved self-aligned gate deposition process can lead to a good gate coupling and less parasitic parameters. These newly developed process play a prominent part in increasing the cut-off frequency and maximum oscillation frequency of graphene radio frequency devices. In addition, single crystal graphene is helpful in eliminating carriers scattering and improving the radio frequency properties of graphene transistor. So far, the highest cut-off frequency of graphene transistor reaches over 300 GHz by a few groups, but the maximum oscillation frequency remains low. Record-high maximum oscillation frequency is 200 GHz when gate length is 60 nm. Further improvement of maximum oscillation frequency needs to be tried out. Several graphene radio frequency circuits are also discussed in the paper. Some of the circuits have similar structures to silicon-based circuits, and others are designed based on the unique property of graphene transistor, like ambipolar transport properties. The new concept circuits have simpler structures than conventional circuits. With the rapid development of graphene growth and related integrating technology, the potential to use graphene in radio frequency field will be further increased.

Reference (95)

Catalog

    /

    返回文章
    返回