搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体增强石墨烯THz吸收

谢凌云 肖文波 黄国庆 胡爱荣 刘江涛

光子晶体增强石墨烯THz吸收

谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛
PDF
导出引用
  • 研究了光子晶体表面石墨烯在应力赝磁场作用下的太赫兹(THz)吸收. 由于应力赝磁场的存在使得石墨烯中电子出现朗道能级并对THz波呈现出一个较强的吸收. 而光子晶体和石墨烯形成了表面微腔结构使得石墨烯对THz波的吸收比无光子晶体时增强了将近四倍. 且可以通过改变应力赝磁场和间隔层厚度来调控石墨烯的THz吸收.
    • 基金项目: 国家自然科学基金(批准号:10904059,11364033)、江西省自然科学基金(批准号:20122BAB212003 20132BAB202003)、江西省教育厅科研基金(批准号:GJJ13005)和集成光电子学国家重点实验室开放课题(批准号:IOSKL2012KF14)资助的课题.
    [1]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [2]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [3]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 3032

    [4]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [5]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [6]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏邢春飞张峥张存林2012物理学报 61 024202]

    [7]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [8]

    Liu H C 1992 Appl. Phys. Lett. 60 1507

    [9]

    Levine B F J 1993 Appl. Phys. 74 R1

    [10]

    Goldberg A, Choi K K, Cho E 2005 Infrared Phys. m& Tech. 47 91

    [11]

    Graf M, Scalari G, Hofstetter D Faist J, Beere H, Linfield E, Ritchie D, Davies G 2004 Appl Phys. Lett. 84 475

    [12]

    Liu H C, Song C Y, SpringThorpe A J Cao J C 2004 Appl. Phys. Lett. 84 4068

    [13]

    Cao J C 2006 Physics 35 953 (in Chinese) [曹俊诚 2006 物理 35 953]

    [14]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666

    [15]

    Novoselov V S, Geim A K, Morozov S V, Jiang D 2005 Nature 438 197

    [16]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [17]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nature Physics 2 620

    [18]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photonics 4 611

    [19]

    Wang X, Zhi L J Mulen K 2008 Nano Lett. 8 323

    [20]

    Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A Xiao S S 2013 Appl. Phys. Lett. 102 131101

    [21]

    Pomar J L G, Alexey Y N, Luis M M 2013 ACS Nano 7 4988

    [22]

    Eric S M, Luis E F F T 2012 Phys. Rev. B 86 125449

    [23]

    Calvo H L, Pablo M P P, Roche S, Torres L E F F 2012 Appl. Phys. Lett. 101 253506

    [24]

    Song Y Wu H C 2013 J. Phys.: Condens. Matter 25 355301

    [25]

    Liang S J, Sun S, Ang L K 2013 Carbon 61 294

    [26]

    Peres N M R, Ribeiro R M, Neto A H C 2010 Phys. Rev. Lett. 105 055501

    [27]

    Zhang Z Z, Chang K Peeters F M 2008 Phys. Rev. B 77 235411

    [28]

    Chang K, Liu J, Xia J B, Dai N 2007 Appl. Phys. Lett. 91 181906

    [29]

    Liu J T, Su F H, Wang H and Deng X H 2011 EPL 95 24003

    [30]

    Wu H Q, Linghu C Y, L H M, Qian H Chin 2013 Physics B 22 097304

    [31]

    Liu J T, Huang J H, Xiao W B, Hu A R, Wang J H 2012 Acta Phys. Sin. 61 177202 (in Chinese) [刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉, 2012 物理学报 61 047803]

    [32]

    Ju L Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A Liang X A, Zettl Y, Shen R, Wang F 2011 Nature Nanotechnology 6 630

    [33]

    Ren L, Zhang Q, Yao J, Sun Z, R K, Zheng Y, Nanot S, Jin Z, Kawayama I, Tonouchi M, Tour J M, Kono J 2012 Nano Lett. 7 3711

    [34]

    Lee S H, Choi M Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y Zhang X, Min B 2012 Nature Materials 11 936

    [35]

    Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780

    [36]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [37]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese) [张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803]

    [38]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401.

    [39]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [40]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104

    [41]

    Peres N M R, Bludov Y V 2013 EPL 101 58002

    [42]

    Guinea F, Katsnelson M I, Geim A K 2010 Nature Physics 6 30

    [43]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544

    [44]

    Iyengar A, Wang J H, Fertig H A, Brey L 2007 Phys. Rev. B 75 125430.

    [45]

    Mele E J, Král P, Tománek D 2000 Phys. Rev. B 61 7669

    [46]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

  • [1]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [2]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [3]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 3032

    [4]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [5]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [6]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏邢春飞张峥张存林2012物理学报 61 024202]

    [7]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [8]

    Liu H C 1992 Appl. Phys. Lett. 60 1507

    [9]

    Levine B F J 1993 Appl. Phys. 74 R1

    [10]

    Goldberg A, Choi K K, Cho E 2005 Infrared Phys. m& Tech. 47 91

    [11]

    Graf M, Scalari G, Hofstetter D Faist J, Beere H, Linfield E, Ritchie D, Davies G 2004 Appl Phys. Lett. 84 475

    [12]

    Liu H C, Song C Y, SpringThorpe A J Cao J C 2004 Appl. Phys. Lett. 84 4068

    [13]

    Cao J C 2006 Physics 35 953 (in Chinese) [曹俊诚 2006 物理 35 953]

    [14]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666

    [15]

    Novoselov V S, Geim A K, Morozov S V, Jiang D 2005 Nature 438 197

    [16]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [17]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nature Physics 2 620

    [18]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photonics 4 611

    [19]

    Wang X, Zhi L J Mulen K 2008 Nano Lett. 8 323

    [20]

    Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A Xiao S S 2013 Appl. Phys. Lett. 102 131101

    [21]

    Pomar J L G, Alexey Y N, Luis M M 2013 ACS Nano 7 4988

    [22]

    Eric S M, Luis E F F T 2012 Phys. Rev. B 86 125449

    [23]

    Calvo H L, Pablo M P P, Roche S, Torres L E F F 2012 Appl. Phys. Lett. 101 253506

    [24]

    Song Y Wu H C 2013 J. Phys.: Condens. Matter 25 355301

    [25]

    Liang S J, Sun S, Ang L K 2013 Carbon 61 294

    [26]

    Peres N M R, Ribeiro R M, Neto A H C 2010 Phys. Rev. Lett. 105 055501

    [27]

    Zhang Z Z, Chang K Peeters F M 2008 Phys. Rev. B 77 235411

    [28]

    Chang K, Liu J, Xia J B, Dai N 2007 Appl. Phys. Lett. 91 181906

    [29]

    Liu J T, Su F H, Wang H and Deng X H 2011 EPL 95 24003

    [30]

    Wu H Q, Linghu C Y, L H M, Qian H Chin 2013 Physics B 22 097304

    [31]

    Liu J T, Huang J H, Xiao W B, Hu A R, Wang J H 2012 Acta Phys. Sin. 61 177202 (in Chinese) [刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉, 2012 物理学报 61 047803]

    [32]

    Ju L Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A Liang X A, Zettl Y, Shen R, Wang F 2011 Nature Nanotechnology 6 630

    [33]

    Ren L, Zhang Q, Yao J, Sun Z, R K, Zheng Y, Nanot S, Jin Z, Kawayama I, Tonouchi M, Tour J M, Kono J 2012 Nano Lett. 7 3711

    [34]

    Lee S H, Choi M Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y Zhang X, Min B 2012 Nature Materials 11 936

    [35]

    Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780

    [36]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [37]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese) [张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803]

    [38]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401.

    [39]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [40]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104

    [41]

    Peres N M R, Bludov Y V 2013 EPL 101 58002

    [42]

    Guinea F, Katsnelson M I, Geim A K 2010 Nature Physics 6 30

    [43]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544

    [44]

    Iyengar A, Wang J H, Fertig H A, Brey L 2007 Phys. Rev. B 75 125430.

    [45]

    Mele E J, Král P, Tománek D 2000 Phys. Rev. B 61 7669

    [46]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

  • [1] 邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙. 光子石墨烯中赝磁场作用下的谷霍尔效应. 物理学报, 2017, 66(14): 144204. doi: 10.7498/aps.66.144204
    [2] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [3] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构. 物理学报, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [4] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [5] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [6] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [9] 王健, 张超越, 许锋. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2020, (0): . doi: 10.7498/aps.70.20201034
    [10] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [11] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [12] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [13] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [14] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [15] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [16] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [17] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [18] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [19] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [20] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2338
  • PDF下载量:  1154
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-08
  • 修回日期:  2013-11-10
  • 刊出日期:  2014-03-05

光子晶体增强石墨烯THz吸收

  • 1. 南昌大学物理系, 南昌 330031;
  • 2. 中山大学物理科学与工程技术学院, 广州 510275;
  • 3. 南昌航空大学无损检测技术教育部重点实验室, 南昌 330063;
  • 4. 南昌大学高等研究院微尺度科学实验室, 南昌 330031
    基金项目: 

    国家自然科学基金(批准号:10904059,11364033)、江西省自然科学基金(批准号:20122BAB212003 20132BAB202003)、江西省教育厅科研基金(批准号:GJJ13005)和集成光电子学国家重点实验室开放课题(批准号:IOSKL2012KF14)资助的课题.

摘要: 研究了光子晶体表面石墨烯在应力赝磁场作用下的太赫兹(THz)吸收. 由于应力赝磁场的存在使得石墨烯中电子出现朗道能级并对THz波呈现出一个较强的吸收. 而光子晶体和石墨烯形成了表面微腔结构使得石墨烯对THz波的吸收比无光子晶体时增强了将近四倍. 且可以通过改变应力赝磁场和间隔层厚度来调控石墨烯的THz吸收.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回