搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光抽运多层石墨烯太赫兹表面等离子体增益特性的研究

刘亚青 张玉萍 张会云 吕欢欢 李彤彤 任广军

光抽运多层石墨烯太赫兹表面等离子体增益特性的研究

刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军
PDF
导出引用
导出核心图
  • 本文建立了光抽运多层石墨烯表面等离子体模型,计算了光抽运多层石墨烯等离子体传播系数的实部和吸收系数,讨论了动量弛豫时间、温度、层数、准费米能级对表面等离子体传播系数的实部和吸收系数的影响. 研究结果表明,光抽运多层石墨烯使其动态电导率的实部在太赫兹频段内出现负值时,石墨烯表面等离子体实现增益. 通过光抽运剥离层石墨烯和含有底层石墨烯结构表面等离子体传播系数和吸收系数比较,表明光抽运剥离层石墨烯能更有效地实现表面等离子体的增益. 同时,在低温下,光抽运具有合适层数的石墨烯比光抽运单层石墨烯能获得更大的表面等离子体增益.
    • 基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东科技大学科研创新团队支持计划项目(批准号:2012KYTD103)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学基金(批准号:YCB120173)资助的课题.
    [1]

    Han P Y, Liu W, Xie Y H, Zhang X C 2009 Physics 38 06 (in Chinese) [韩鹏昱, 刘伟, 谢亚红, 张希成2009 物理 38 06]

    [2]

    Geim A K MacDonald A H 2007 Phys. Today 60 35

    [3]

    Castro Neto A H Guinea F Peres N M R Novoselov K S Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Wu H Q, Linghu C Y, Lv H M, Qian H 2013 Chin. Phys. B 22 098106

    [5]

    Rzhii V, Rzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [7]

    Ryzhii V, Ryzhii M, Satou A 2009 J. Appl. Phys. 106 084507

    [8]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. (c) 5 261

    [9]

    Zhang Y P, Zhang X, Liu L Y, Zhang H Y, Gao Y, Xu S L, Zhang H Y 2009 Chinese Journal of Lasers 39 0111002 (in Chinese) [张玉萍, 张晓, 刘陵玉, 张洪艳, 高营, 徐世林, 张会云2009 中国激光39 0111002]

    [10]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2011 J. Appl. Phys. 110 094503

    [11]

    Ryzhii M, Ryzhii V 2007 J. Appl. Phys. 46 08151

    [12]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese)[张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云2012 物理学报61 047803]

    [13]

    Zhang Y P, Liu L Y, Chen Q, Feng Z H, Wang J L, Zhang X, Zhang H Y, Zhang H Y 2013 Acta Phys. Sin. 62 097202 (in Chinese)[张玉萍, 刘陵玉, 陈琦, 冯志红, 张晓, 张洪艳, 张会云2013 物理学报62 097202]

    [14]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 Appl. Phys. 107 054505

    [15]

    Dubinov A A, Aleshkin V Y, Ryzhii M, Otsuji T, Ryzhii V 2009 Appl. Phys. 2 092301

    [16]

    Aleshkin V Ya, Dubinov A A, Ryzhii V 2009 JETP Letters 89 63

    [17]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [18]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [19]

    Vafek O 2006 Phys. Rev. Lett. 97 266406

    [20]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281

    [21]

    Jablan M, Buljan H, Solijacic M 2009 Phys. Rev. B 80 245435

    [22]

    Watanabe T, Fukushima T, Yabe Y, Boubanga-Tombet S A, Satou A, Dubinov A A, Aleshkin V Ya, Mitin V, Ryzhii V, Otsuji T 2013 New J. Phys. 15 075003

    [23]

    Dubinov A A, Aleshkin V Ya, Mitin V Otsji T, Ryzhii V 2010 J. Phys. 23 145302

    [24]

    Vakil A 2011 Science 332 1291

    [25]

    Chen P Y, Alu A 2011 ACS Nano 5 5855

    [26]

    Lin C, Tian Z, Xun L, Guoping W 2013 Optics Express 21 28628

    [27]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [28]

    Zhang Y P, Liu L Y, Zhang X, Zhang H Y, Zhang H Y 2012 Journal of Optoelectronics. Laser 23 832 (in Chinese)[张玉萍, 刘陵玉, 张晓, 张洪艳, 张会云2012 光电子 激光23 832]

    [29]

    Satou A, Otsuji T, Ryzhii V 2011 J. Appl. Phys 50 070116

    [30]

    Satou A, Ryzhii V, Kurita Y, Otsuji T 2013 J. Appl. Phys. 113 143108

  • [1]

    Han P Y, Liu W, Xie Y H, Zhang X C 2009 Physics 38 06 (in Chinese) [韩鹏昱, 刘伟, 谢亚红, 张希成2009 物理 38 06]

    [2]

    Geim A K MacDonald A H 2007 Phys. Today 60 35

    [3]

    Castro Neto A H Guinea F Peres N M R Novoselov K S Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Wu H Q, Linghu C Y, Lv H M, Qian H 2013 Chin. Phys. B 22 098106

    [5]

    Rzhii V, Rzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [7]

    Ryzhii V, Ryzhii M, Satou A 2009 J. Appl. Phys. 106 084507

    [8]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. (c) 5 261

    [9]

    Zhang Y P, Zhang X, Liu L Y, Zhang H Y, Gao Y, Xu S L, Zhang H Y 2009 Chinese Journal of Lasers 39 0111002 (in Chinese) [张玉萍, 张晓, 刘陵玉, 张洪艳, 高营, 徐世林, 张会云2009 中国激光39 0111002]

    [10]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2011 J. Appl. Phys. 110 094503

    [11]

    Ryzhii M, Ryzhii V 2007 J. Appl. Phys. 46 08151

    [12]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese)[张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云2012 物理学报61 047803]

    [13]

    Zhang Y P, Liu L Y, Chen Q, Feng Z H, Wang J L, Zhang X, Zhang H Y, Zhang H Y 2013 Acta Phys. Sin. 62 097202 (in Chinese)[张玉萍, 刘陵玉, 陈琦, 冯志红, 张晓, 张洪艳, 张会云2013 物理学报62 097202]

    [14]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 Appl. Phys. 107 054505

    [15]

    Dubinov A A, Aleshkin V Y, Ryzhii M, Otsuji T, Ryzhii V 2009 Appl. Phys. 2 092301

    [16]

    Aleshkin V Ya, Dubinov A A, Ryzhii V 2009 JETP Letters 89 63

    [17]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [18]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [19]

    Vafek O 2006 Phys. Rev. Lett. 97 266406

    [20]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281

    [21]

    Jablan M, Buljan H, Solijacic M 2009 Phys. Rev. B 80 245435

    [22]

    Watanabe T, Fukushima T, Yabe Y, Boubanga-Tombet S A, Satou A, Dubinov A A, Aleshkin V Ya, Mitin V, Ryzhii V, Otsuji T 2013 New J. Phys. 15 075003

    [23]

    Dubinov A A, Aleshkin V Ya, Mitin V Otsji T, Ryzhii V 2010 J. Phys. 23 145302

    [24]

    Vakil A 2011 Science 332 1291

    [25]

    Chen P Y, Alu A 2011 ACS Nano 5 5855

    [26]

    Lin C, Tian Z, Xun L, Guoping W 2013 Optics Express 21 28628

    [27]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [28]

    Zhang Y P, Liu L Y, Zhang X, Zhang H Y, Zhang H Y 2012 Journal of Optoelectronics. Laser 23 832 (in Chinese)[张玉萍, 刘陵玉, 张晓, 张洪艳, 张会云2012 光电子 激光23 832]

    [29]

    Satou A, Otsuji T, Ryzhii V 2011 J. Appl. Phys 50 070116

    [30]

    Satou A, Ryzhii V, Kurita Y, Otsuji T 2013 J. Appl. Phys. 113 143108

  • [1] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元的厚度渐变镀银条带探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [2] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [3] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [4] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [5] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [6] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [7] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [8] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [9] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响. 物理学报, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [10] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [11] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [12] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [13] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [14] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [15] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [16] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [17] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  631
  • PDF下载量:  984
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-20
  • 修回日期:  2014-02-18
  • 刊出日期:  2014-04-05

光抽运多层石墨烯太赫兹表面等离子体增益特性的研究

  • 1. 天津理工大学电子信息工程学院, 天津 300384;
  • 2. 山东科技大学电子通信与物理学院, 青岛市太赫兹技术重点实验室, 青岛 266510
    基金项目: 

    国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东科技大学科研创新团队支持计划项目(批准号:2012KYTD103)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学基金(批准号:YCB120173)资助的课题.

摘要: 本文建立了光抽运多层石墨烯表面等离子体模型,计算了光抽运多层石墨烯等离子体传播系数的实部和吸收系数,讨论了动量弛豫时间、温度、层数、准费米能级对表面等离子体传播系数的实部和吸收系数的影响. 研究结果表明,光抽运多层石墨烯使其动态电导率的实部在太赫兹频段内出现负值时,石墨烯表面等离子体实现增益. 通过光抽运剥离层石墨烯和含有底层石墨烯结构表面等离子体传播系数和吸收系数比较,表明光抽运剥离层石墨烯能更有效地实现表面等离子体的增益. 同时,在低温下,光抽运具有合适层数的石墨烯比光抽运单层石墨烯能获得更大的表面等离子体增益.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回