搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体辅助平板波导的传输特性及应用研究

孙杰 杨剑锋 闫肃 杨晶晶 黄铭

等离子体辅助平板波导的传输特性及应用研究

孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭
PDF
导出引用
导出核心图
  • 如何灵活地控制和操纵太赫波是目前研究的热点. 根据电磁波传输理论, 导出了等离子体辅助平板波导的场分布和色散关系表达式, 计算了其传输特性, 并通过全波仿真进行了证实. 结果表明, 等离子体辅助平板波导具有带阻特性, 上边带截止频率等于等离子体频率, 等离子体层越薄, 下边带截止频率越高, 带宽越窄; 阻带内存在两种不同的物理机理, 一种与等离子体和中间媒质的谐振耦合有关, 另一种与表面波的形成有关. 此外, 本文还研究了等离子体频率及碰撞频率对传输特性的影响, 提出了通过改变等离子体频率调谐平板波导滤波器特性的方法. 同时, 采用褶皱金属结构实现了等离子体层, 设计了平板波导传感模型, 通过改变凹槽内的材料的介电常数仿真了其传感特性, 结果表明当材料的介电常数变化0.1%时, 平均截止频率变化1.8 GHz; 通过检测截止频率的变化, 传感器能明显分辨氮、汽油、液态石蜡、甘油和水, 证实了其优良的太赫传感特性. 这项工作对研究太赫波的传输及太赫器件的设计和制备具有指导意义.
    • 基金项目: 国家自然科学基金(批准号: 61161007, 61261002, 61461052)、教育部博士点基金(批准号: 20135301110003, 20125301120009)﹑中国博士后基金(批准号: 2013M531989, 2014T70890) 和云南省自然科学基金重点项目(批准号: 2013FA006)资助的课题.
    [1]

    Shaghik A, Shahraam A V, Tanya M M, Derek A 2013 Advances in Optics and Photonics 5 169

    [2]

    Chen P Y, Huang H Y, Akinwande D, Alu A 2014 ACS Photonics 1 647

    [3]

    Pozar N M 2007 Microwave Engineering (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [张肇仪, 周乐柱, 吴德明等译2007微波工程(北京: 电子工业出版社)第83页]

    [4]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [5]

    Mendis R, Mittleman D M 2009 Opt. Express 17 14839

    [6]

    Astley V, Reichel K S, Jones J, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 231108

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [8]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [9]

    Luo J, Lu W X, Hang Z H, Chen H Y, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903

    [10]

    Ourir A, Maurel A, Pagneux V 2013 Opt. Lett. 38 2092

    [11]

    Wu Z Y, Huang M, Yang J J, Yu J, Peng J H 2009 Chinese Journal of Lasers 36 458 (in Chinese) [吴中元, 黄铭, 杨晶晶, 余江, 彭金辉 2009 中国激光 36 458]

    [12]

    Li D Y, Li E P 2013 Opt. Lett. 38 3384

    [13]

    Bahadori M, Eshaghian A, Mehrany K 2014 Journal of lightwave technology 32 2659

    [14]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [15]

    Han B, Jiang C 2009 Appl. Phys. B 95 97

    [16]

    Li J F, Li Z Y 2014 Chin. Phys. B 23 047305

    [17]

    Xu Y D, Wu Q N, Chen H Y 2014 Laser Photonics Reviews 8 562

    [18]

    Akyildiz I F, Jornet J M, Han C 2014 Physical Communication 12 16

    [19]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209 (in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

    [20]

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J Guang 2014 Acta Phys. Sin. 63 133203 (in Chinese) [杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203]

    [21]

    Tonouchi M 2007 Nature Photonics 1 97

    [22]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007太赫兹科学技术与应用(北京: 北京大学出版社)第9页]

    [23]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2007 J. Opt. A: Pure Appl. Opt. 7 S97

    [24]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Optical Mater. 1 543

  • [1]

    Shaghik A, Shahraam A V, Tanya M M, Derek A 2013 Advances in Optics and Photonics 5 169

    [2]

    Chen P Y, Huang H Y, Akinwande D, Alu A 2014 ACS Photonics 1 647

    [3]

    Pozar N M 2007 Microwave Engineering (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [张肇仪, 周乐柱, 吴德明等译2007微波工程(北京: 电子工业出版社)第83页]

    [4]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [5]

    Mendis R, Mittleman D M 2009 Opt. Express 17 14839

    [6]

    Astley V, Reichel K S, Jones J, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 231108

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [8]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [9]

    Luo J, Lu W X, Hang Z H, Chen H Y, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903

    [10]

    Ourir A, Maurel A, Pagneux V 2013 Opt. Lett. 38 2092

    [11]

    Wu Z Y, Huang M, Yang J J, Yu J, Peng J H 2009 Chinese Journal of Lasers 36 458 (in Chinese) [吴中元, 黄铭, 杨晶晶, 余江, 彭金辉 2009 中国激光 36 458]

    [12]

    Li D Y, Li E P 2013 Opt. Lett. 38 3384

    [13]

    Bahadori M, Eshaghian A, Mehrany K 2014 Journal of lightwave technology 32 2659

    [14]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [15]

    Han B, Jiang C 2009 Appl. Phys. B 95 97

    [16]

    Li J F, Li Z Y 2014 Chin. Phys. B 23 047305

    [17]

    Xu Y D, Wu Q N, Chen H Y 2014 Laser Photonics Reviews 8 562

    [18]

    Akyildiz I F, Jornet J M, Han C 2014 Physical Communication 12 16

    [19]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209 (in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

    [20]

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J Guang 2014 Acta Phys. Sin. 63 133203 (in Chinese) [杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203]

    [21]

    Tonouchi M 2007 Nature Photonics 1 97

    [22]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007太赫兹科学技术与应用(北京: 北京大学出版社)第9页]

    [23]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2007 J. Opt. A: Pure Appl. Opt. 7 S97

    [24]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Optical Mater. 1 543

  • [1] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [2] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [3] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [4] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [5] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [6] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [7] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [8] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [9] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [10] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [11] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  495
  • PDF下载量:  2520
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-06
  • 修回日期:  2014-10-25
  • 刊出日期:  2015-04-05

等离子体辅助平板波导的传输特性及应用研究

  • 1. 云南大学无线创新实验室, 信息学院, 昆明 650091;
  • 2. 北京理工大学信息与电子学院, 北京 100081;
  • 3. 云南省高校谱传感与边疆无线电安全重点实验室, 昆明 650091
    基金项目: 

    国家自然科学基金(批准号: 61161007, 61261002, 61461052)、教育部博士点基金(批准号: 20135301110003, 20125301120009)﹑中国博士后基金(批准号: 2013M531989, 2014T70890) 和云南省自然科学基金重点项目(批准号: 2013FA006)资助的课题.

摘要: 如何灵活地控制和操纵太赫波是目前研究的热点. 根据电磁波传输理论, 导出了等离子体辅助平板波导的场分布和色散关系表达式, 计算了其传输特性, 并通过全波仿真进行了证实. 结果表明, 等离子体辅助平板波导具有带阻特性, 上边带截止频率等于等离子体频率, 等离子体层越薄, 下边带截止频率越高, 带宽越窄; 阻带内存在两种不同的物理机理, 一种与等离子体和中间媒质的谐振耦合有关, 另一种与表面波的形成有关. 此外, 本文还研究了等离子体频率及碰撞频率对传输特性的影响, 提出了通过改变等离子体频率调谐平板波导滤波器特性的方法. 同时, 采用褶皱金属结构实现了等离子体层, 设计了平板波导传感模型, 通过改变凹槽内的材料的介电常数仿真了其传感特性, 结果表明当材料的介电常数变化0.1%时, 平均截止频率变化1.8 GHz; 通过检测截止频率的变化, 传感器能明显分辨氮、汽油、液态石蜡、甘油和水, 证实了其优良的太赫传感特性. 这项工作对研究太赫波的传输及太赫器件的设计和制备具有指导意义.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回