搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体辅助平板波导的传输特性及应用研究

孙杰 杨剑锋 闫肃 杨晶晶 黄铭

等离子体辅助平板波导的传输特性及应用研究

孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭
PDF
导出引用
导出核心图
  • 如何灵活地控制和操纵太赫波是目前研究的热点. 根据电磁波传输理论, 导出了等离子体辅助平板波导的场分布和色散关系表达式, 计算了其传输特性, 并通过全波仿真进行了证实. 结果表明, 等离子体辅助平板波导具有带阻特性, 上边带截止频率等于等离子体频率, 等离子体层越薄, 下边带截止频率越高, 带宽越窄; 阻带内存在两种不同的物理机理, 一种与等离子体和中间媒质的谐振耦合有关, 另一种与表面波的形成有关. 此外, 本文还研究了等离子体频率及碰撞频率对传输特性的影响, 提出了通过改变等离子体频率调谐平板波导滤波器特性的方法. 同时, 采用褶皱金属结构实现了等离子体层, 设计了平板波导传感模型, 通过改变凹槽内的材料的介电常数仿真了其传感特性, 结果表明当材料的介电常数变化0.1%时, 平均截止频率变化1.8 GHz; 通过检测截止频率的变化, 传感器能明显分辨氮、汽油、液态石蜡、甘油和水, 证实了其优良的太赫传感特性. 这项工作对研究太赫波的传输及太赫器件的设计和制备具有指导意义.
    • 基金项目: 国家自然科学基金(批准号: 61161007, 61261002, 61461052)、教育部博士点基金(批准号: 20135301110003, 20125301120009)﹑中国博士后基金(批准号: 2013M531989, 2014T70890) 和云南省自然科学基金重点项目(批准号: 2013FA006)资助的课题.
    [1]

    Shaghik A, Shahraam A V, Tanya M M, Derek A 2013 Advances in Optics and Photonics 5 169

    [2]

    Chen P Y, Huang H Y, Akinwande D, Alu A 2014 ACS Photonics 1 647

    [3]

    Pozar N M 2007 Microwave Engineering (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [张肇仪, 周乐柱, 吴德明等译2007微波工程(北京: 电子工业出版社)第83页]

    [4]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [5]

    Mendis R, Mittleman D M 2009 Opt. Express 17 14839

    [6]

    Astley V, Reichel K S, Jones J, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 231108

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [8]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [9]

    Luo J, Lu W X, Hang Z H, Chen H Y, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903

    [10]

    Ourir A, Maurel A, Pagneux V 2013 Opt. Lett. 38 2092

    [11]

    Wu Z Y, Huang M, Yang J J, Yu J, Peng J H 2009 Chinese Journal of Lasers 36 458 (in Chinese) [吴中元, 黄铭, 杨晶晶, 余江, 彭金辉 2009 中国激光 36 458]

    [12]

    Li D Y, Li E P 2013 Opt. Lett. 38 3384

    [13]

    Bahadori M, Eshaghian A, Mehrany K 2014 Journal of lightwave technology 32 2659

    [14]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [15]

    Han B, Jiang C 2009 Appl. Phys. B 95 97

    [16]

    Li J F, Li Z Y 2014 Chin. Phys. B 23 047305

    [17]

    Xu Y D, Wu Q N, Chen H Y 2014 Laser Photonics Reviews 8 562

    [18]

    Akyildiz I F, Jornet J M, Han C 2014 Physical Communication 12 16

    [19]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209 (in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

    [20]

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J Guang 2014 Acta Phys. Sin. 63 133203 (in Chinese) [杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203]

    [21]

    Tonouchi M 2007 Nature Photonics 1 97

    [22]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007太赫兹科学技术与应用(北京: 北京大学出版社)第9页]

    [23]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2007 J. Opt. A: Pure Appl. Opt. 7 S97

    [24]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Optical Mater. 1 543

  • [1]

    Shaghik A, Shahraam A V, Tanya M M, Derek A 2013 Advances in Optics and Photonics 5 169

    [2]

    Chen P Y, Huang H Y, Akinwande D, Alu A 2014 ACS Photonics 1 647

    [3]

    Pozar N M 2007 Microwave Engineering (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [张肇仪, 周乐柱, 吴德明等译2007微波工程(北京: 电子工业出版社)第83页]

    [4]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [5]

    Mendis R, Mittleman D M 2009 Opt. Express 17 14839

    [6]

    Astley V, Reichel K S, Jones J, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 231108

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [8]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [9]

    Luo J, Lu W X, Hang Z H, Chen H Y, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903

    [10]

    Ourir A, Maurel A, Pagneux V 2013 Opt. Lett. 38 2092

    [11]

    Wu Z Y, Huang M, Yang J J, Yu J, Peng J H 2009 Chinese Journal of Lasers 36 458 (in Chinese) [吴中元, 黄铭, 杨晶晶, 余江, 彭金辉 2009 中国激光 36 458]

    [12]

    Li D Y, Li E P 2013 Opt. Lett. 38 3384

    [13]

    Bahadori M, Eshaghian A, Mehrany K 2014 Journal of lightwave technology 32 2659

    [14]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [15]

    Han B, Jiang C 2009 Appl. Phys. B 95 97

    [16]

    Li J F, Li Z Y 2014 Chin. Phys. B 23 047305

    [17]

    Xu Y D, Wu Q N, Chen H Y 2014 Laser Photonics Reviews 8 562

    [18]

    Akyildiz I F, Jornet J M, Han C 2014 Physical Communication 12 16

    [19]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209 (in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

    [20]

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J Guang 2014 Acta Phys. Sin. 63 133203 (in Chinese) [杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203]

    [21]

    Tonouchi M 2007 Nature Photonics 1 97

    [22]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007太赫兹科学技术与应用(北京: 北京大学出版社)第9页]

    [23]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2007 J. Opt. A: Pure Appl. Opt. 7 S97

    [24]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Optical Mater. 1 543

  • [1] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [2] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [3] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [4] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [5] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导. 物理学报, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [6] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [7] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [8] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [9] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [10] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [11] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [12] 王玲玲, 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [13] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [14] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [15] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [16] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究. 物理学报, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [17] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [18] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [19] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [20] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  960
  • PDF下载量:  2523
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-06
  • 修回日期:  2014-10-25
  • 刊出日期:  2015-04-05

等离子体辅助平板波导的传输特性及应用研究

  • 1. 云南大学无线创新实验室, 信息学院, 昆明 650091;
  • 2. 北京理工大学信息与电子学院, 北京 100081;
  • 3. 云南省高校谱传感与边疆无线电安全重点实验室, 昆明 650091
    基金项目: 

    国家自然科学基金(批准号: 61161007, 61261002, 61461052)、教育部博士点基金(批准号: 20135301110003, 20125301120009)﹑中国博士后基金(批准号: 2013M531989, 2014T70890) 和云南省自然科学基金重点项目(批准号: 2013FA006)资助的课题.

摘要: 如何灵活地控制和操纵太赫波是目前研究的热点. 根据电磁波传输理论, 导出了等离子体辅助平板波导的场分布和色散关系表达式, 计算了其传输特性, 并通过全波仿真进行了证实. 结果表明, 等离子体辅助平板波导具有带阻特性, 上边带截止频率等于等离子体频率, 等离子体层越薄, 下边带截止频率越高, 带宽越窄; 阻带内存在两种不同的物理机理, 一种与等离子体和中间媒质的谐振耦合有关, 另一种与表面波的形成有关. 此外, 本文还研究了等离子体频率及碰撞频率对传输特性的影响, 提出了通过改变等离子体频率调谐平板波导滤波器特性的方法. 同时, 采用褶皱金属结构实现了等离子体层, 设计了平板波导传感模型, 通过改变凹槽内的材料的介电常数仿真了其传感特性, 结果表明当材料的介电常数变化0.1%时, 平均截止频率变化1.8 GHz; 通过检测截止频率的变化, 传感器能明显分辨氮、汽油、液态石蜡、甘油和水, 证实了其优良的太赫传感特性. 这项工作对研究太赫波的传输及太赫器件的设计和制备具有指导意义.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回