搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于回转体型艇身的电磁流体表面推进与矢量控制特性研究

刘宗凯 顾金良 周本谋 纪延亮 黄亚冬 徐驰

基于回转体型艇身的电磁流体表面推进与矢量控制特性研究

刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰
PDF
导出引用
导出核心图
  • 电磁流体表面推进是在推进体周围的导电流体中(海水、等离子体等)激励出电磁体积力,并利用电磁体积力的反作用力达到推进的目的. 本文基于电磁场和流体力学的基本控制方程,通过电磁场有限元方法探讨了电磁流体表面推进在回转体型艇身上的矢量控制效果,并分析了在两种不同的电磁力作用区域下航行器周围的场强的分布特征以及受力情况. 结果表明:这种控制方式可以在不改变航行器攻角和推力方向的情况下通过调控电磁力的作用范围来实现航行器姿态调整,进而达到矢量推进与控制的目的;在航行器表面施加控制方式A的电磁力可以使航行器获得一个抬头力矩,而在控制方式B作用下航行器可以同时对俯仰力矩和偏航力矩进行调整. 因此作为一种新兴的推进方式,电磁流体推进不仅具有高速高效、操作简单、高有效载荷等特点,而且矢量推进也成为电磁流体表面推进另外一个优势.
    • 基金项目: 南京理工大学科研发展基金(批准号:XKF09058)和江苏省普通高校研究生科研创新计划(批准号:CXZZ11_0231)资助的课题.
    [1]

    Hsiao C T, Pauley L L 1999 J Fluid Eng. 121 3

    [2]

    Wu G L, Yan J 2008 Guang Dong Shipbuilding 4 2(in Chinese) [吴光林, 严谨2008 广东造船4 2]

    [3]

    Gur O, Rosen A 2009 J. Aircraft 46 1

    [4]

    Mei D J, Fan B C, Huang L P 2010 Acta Phys. Sin. 59 6786 (in Chinese)[梅栋杰, 范宝春, 黄乐萍2010 物理学报 59 6786]

    [5]

    Liu Z K, Zhou B M, Liu H X 2011 Acta Phys. Sin. 60 084701 (in Chinese)[刘宗凯, 周本谋, 刘会星2011 物理学报60 084701]

    [6]

    Mason M S, Crowther W J 2004 2nd AIAA Flow Control Conference (Portland: American Institute of Aeronautics and Astronautics) p2210

    [7]

    Kowal H J 2003 Can. Aeronaut. Space J. 48 2

    [8]

    Howse M 2003 Power Eng. 17 35

    [9]

    Landau D, Chase J, Randolph T 2011 J. Spacecraft Rockets, 48 467

    [10]

    Martinez-Sanchez M, Pollard J E 1998 J. Propul. Power 14 688

    [11]

    Schroeder W K 1999 Fuzzy logic autopilot synthesis for a nonlinearly behaved thruster-controlled missile (Arlington: University of Texas at Arlington) pp46–128

    [12]

    Doman D B, Gamble B J, Ngo A D 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6778

    [13]

    Ridgely D B, Drake D, Triplett L 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6771

    [14]

    Ju C G, Peng X B, Liu Y 2009 Sci. China Technol. Sc. 39 505 (in Chinese) [琚春光, 彭小波, 刘宇2009 中国科学 E 辑: 技术科学39 505]

    [15]

    Chen Z H, Fan B C, Aubry N 2006 Chinese Phys. Lett. 23 154

    [16]

    Wang M, Xie Y C 2010 Sci. China Technol. Sc. 40 912(in Chinese) [王敏, 解永春2010 中国科学E 辑: 技术科学40 912]

    [17]

    Hua M D, Hamel T, Morin P 2009 IEEE T. Automat. Contr. 54 1837

    [18]

    Xia Y, Fu M 2003 Overview of Flight Vehicle Control-Compound Control Methodology for Flight Vehicles (Berlin: Springer Berlin Heidelberg) pp49-54

    [19]

    Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) pp13-34 (in Chinese) [任玉新, 陈海昕2006 计算流体力学基础(北京: 清华大学出版社) 第13–34 页]

    [20]

    Liu Z K, Zhou B M, Liu H X 2013 Fluid Dyn. Res. 45 3

    [21]

    Jiang C B, Zhang R L, Ding Z P 2007 Computational Fluid Dynamics(Beijing: China Electric Power Press) pp161-169 (in Chinese) [江春波, 张永良, 丁则平2007 计算流体力学(北京: 中国电力出版社) 第161–169 页]

    [22]

    Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp164–206

  • [1]

    Hsiao C T, Pauley L L 1999 J Fluid Eng. 121 3

    [2]

    Wu G L, Yan J 2008 Guang Dong Shipbuilding 4 2(in Chinese) [吴光林, 严谨2008 广东造船4 2]

    [3]

    Gur O, Rosen A 2009 J. Aircraft 46 1

    [4]

    Mei D J, Fan B C, Huang L P 2010 Acta Phys. Sin. 59 6786 (in Chinese)[梅栋杰, 范宝春, 黄乐萍2010 物理学报 59 6786]

    [5]

    Liu Z K, Zhou B M, Liu H X 2011 Acta Phys. Sin. 60 084701 (in Chinese)[刘宗凯, 周本谋, 刘会星2011 物理学报60 084701]

    [6]

    Mason M S, Crowther W J 2004 2nd AIAA Flow Control Conference (Portland: American Institute of Aeronautics and Astronautics) p2210

    [7]

    Kowal H J 2003 Can. Aeronaut. Space J. 48 2

    [8]

    Howse M 2003 Power Eng. 17 35

    [9]

    Landau D, Chase J, Randolph T 2011 J. Spacecraft Rockets, 48 467

    [10]

    Martinez-Sanchez M, Pollard J E 1998 J. Propul. Power 14 688

    [11]

    Schroeder W K 1999 Fuzzy logic autopilot synthesis for a nonlinearly behaved thruster-controlled missile (Arlington: University of Texas at Arlington) pp46–128

    [12]

    Doman D B, Gamble B J, Ngo A D 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6778

    [13]

    Ridgely D B, Drake D, Triplett L 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6771

    [14]

    Ju C G, Peng X B, Liu Y 2009 Sci. China Technol. Sc. 39 505 (in Chinese) [琚春光, 彭小波, 刘宇2009 中国科学 E 辑: 技术科学39 505]

    [15]

    Chen Z H, Fan B C, Aubry N 2006 Chinese Phys. Lett. 23 154

    [16]

    Wang M, Xie Y C 2010 Sci. China Technol. Sc. 40 912(in Chinese) [王敏, 解永春2010 中国科学E 辑: 技术科学40 912]

    [17]

    Hua M D, Hamel T, Morin P 2009 IEEE T. Automat. Contr. 54 1837

    [18]

    Xia Y, Fu M 2003 Overview of Flight Vehicle Control-Compound Control Methodology for Flight Vehicles (Berlin: Springer Berlin Heidelberg) pp49-54

    [19]

    Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) pp13-34 (in Chinese) [任玉新, 陈海昕2006 计算流体力学基础(北京: 清华大学出版社) 第13–34 页]

    [20]

    Liu Z K, Zhou B M, Liu H X 2013 Fluid Dyn. Res. 45 3

    [21]

    Jiang C B, Zhang R L, Ding Z P 2007 Computational Fluid Dynamics(Beijing: China Electric Power Press) pp161-169 (in Chinese) [江春波, 张永良, 丁则平2007 计算流体力学(北京: 中国电力出版社) 第161–169 页]

    [22]

    Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp164–206

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1402
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2013-11-19
  • 刊出日期:  2014-04-05

基于回转体型艇身的电磁流体表面推进与矢量控制特性研究

  • 1. 南京理工大学瞬态物理重点实验室, 南京 210094;
  • 2. 南京理工大学自动化学院, 南京 210094
    基金项目: 

    南京理工大学科研发展基金(批准号:XKF09058)和江苏省普通高校研究生科研创新计划(批准号:CXZZ11_0231)资助的课题.

摘要: 电磁流体表面推进是在推进体周围的导电流体中(海水、等离子体等)激励出电磁体积力,并利用电磁体积力的反作用力达到推进的目的. 本文基于电磁场和流体力学的基本控制方程,通过电磁场有限元方法探讨了电磁流体表面推进在回转体型艇身上的矢量控制效果,并分析了在两种不同的电磁力作用区域下航行器周围的场强的分布特征以及受力情况. 结果表明:这种控制方式可以在不改变航行器攻角和推力方向的情况下通过调控电磁力的作用范围来实现航行器姿态调整,进而达到矢量推进与控制的目的;在航行器表面施加控制方式A的电磁力可以使航行器获得一个抬头力矩,而在控制方式B作用下航行器可以同时对俯仰力矩和偏航力矩进行调整. 因此作为一种新兴的推进方式,电磁流体推进不仅具有高速高效、操作简单、高有效载荷等特点,而且矢量推进也成为电磁流体表面推进另外一个优势.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回