Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study

Wang Guan-Shi Lin Yan-Ming Zhao Ya-Li Jiang Zhen-Yi Zhang Xiao-Dong

Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study

Wang Guan-Shi, Lin Yan-Ming, Zhao Ya-Li, Jiang Zhen-Yi, Zhang Xiao-Dong
PDF
Get Citation
  • Anatase titanium dioxide (TiO2) has attracted much attention due to its excellent photocatalytic properties. However, the band gap of anatase TiO2 is 3.2 eV, which can absorb only about 4% of the ultraviolet light (λ < 400 nm). Molybdenum disulfide (MoS2) is a new layered two-dimensional compound semiconductor, and it has been widely studied for its preferably optical absorption and photocatalytic properties. Moreover, the high recombination rate of photoexcited electron-hole of monolayer MoS2 leads to low photocatalytic efficiency. In this work, based on Heyd-Scuseria-Ernzerhof (HSE06) hybrid density functional theory, the geometric structure, electronic structure, optical properties, charge transfer and effect of pressure on structure of Cu/N doped TiO2/MoS2 heterostructures are systematically studied. The interface interaction between anatase TiO2(101) surface and monolayer MoS2 shows that TiO2 and MoS2 form a van der Waals heterostructure. The defect formation energy is calculated to demonstrate that Cu@O&N@O is the most stable codoping site. The result of the density of states shows that the band gap of TiO2/MoS2 heterojunction is 1.38 eV, which is obviously smaller than that of the pure anatase TiO2(101) surface (2.90 eV). The band gap of Cu/N doped TiO2/MoS2 heterojunction obviously decreases, and an impurity band provided by Cu 3d orbitals appears in the forbidden band, which leads to the decrease of the photon excitation energy and the enhancement of the optical absorption capacity. The x-y planar averaged and three-dimensional charge density difference of Cu/N doped TiO2/MoS2 are also calculated. It is found that there are electrons' and holes' accumulation in the doped anatase TiO2(101) surface and the single layer MoS2, showing that the Cu/N doping can effectively reduce the recombination of the photoexcited electron hole pairs. Calculated optical absorption spectra show that Cu/N doped TiO2/MoS2 system has obvious improvement in the absorption of visible light. In addition, we calculate the geometrical, electronic and optical absorption spectra of TiO2/MoS2 heterojunction under different pressures. The results show that the appropriate increase of pressure can effectively improve the optical absorption properties of heterojunction and Cu/N doped TiO2/MoS2 heterojunction and TiO2/MoS2 heterojunction can effectively improve the optical properties of the material. These findings are helpful in understanding the photocatalytic mechanism and relevant experimental observations.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447030, 51572219), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2016JQ1038, 2015JM1018), the Science Foundation of Northwest University, China (Grant No. 14NW23), and the Double First-class University Construction Project of Northwest University, China.
    [1]

    Kwon W W, Han H, Kim J H 2017 Energy 103 226

    [2]

    Rahmouni S, Negrou B, Settou N, Dominguez J, Gouareh A 2017 Energy 42 1383

    [3]

    Lewis N S, Nocera D G 2006 Science 103 15729

    [4]

    Fujishima A, Honda K 1972 Nature 238 37

    [5]

    Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K 2002 J. Am. Chem. Soc. 124 13547

    [6]

    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K 2005 J. Am. Chem. Soc. 127 8286

    [7]

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K 2006 Nature 440 295

    [8]

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M 2007 J. Phys. Chem. C 111 1042

    [9]

    Chen X, Mao S S 2007 Chem. Rev. 107 289

    [10]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [11]

    Yin S, Zhang Q, Saito F, Sato T 2003 Chem. Lett. 32 358

    [12]

    Ohtani B, Handa J I, Nishimoto S I, Kagiya T 1985 Chem. Phys. Lett. 120 292

    [13]

    Elsellami L, Dappozze F, Fessi N, Houas A, Guillard C 2018 Process. Saf. Environ. 113 109

    [14]

    Jung H S, Kim H 2009 Electron. Mater. Lett. 5 73

    [15]

    Tehare K K, Bhande S S, Mutkule S U, Stadler F J, Ao J P, Mane R S, Liu X 2017 J. Alloys Compd. 704 187

    [16]

    Meng A, Zhang J, Xu D, Cheng B, Yu J 2016 Appl. Catal. B 198 286

    [17]

    Cheng X, Yu X, Xing Z, Yang L 2016 Arab. J. Chem. 9 1706

    [18]

    Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q 2016 Appl. Catal. B: Environ. 195 69

    [19]

    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J 2017 Appl. Catal. B: Environ. 204 324

    [20]

    Zhang W, Yin J, Tang X, Zhang P, Ding Y 2017 Physica 85 259

    [21]

    Brindha A, Sivakumar T 2017 J. Photoch. Photobio. A: Chem. 340 14

    [22]

    Ren D, Li H, Cheng X 2015 Solid. State. Commun. 223 54

    [23]

    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J 2017 Ceram. Int. 43 973

    [24]

    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu S F 2016 Appl. Catal. B: Environ. 191 130

    [25]

    Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C, Miotello A 2015 Appl. Catal. B: Environ. 168 333

    [26]

    Sun L, Xian Z, Cheng X 2012 Langmuir 28 5882

    [27]

    Yang C T, Balakrishnan N, Bhethanabotla V R 2017 J. Phys. Chem. C 118 4702

    [28]

    He H, Lin J, Fu W, Wang X, Wang H 2016 Adv. Energy Mater. 6 1600464

    [29]

    Tao J G, Chai J W, Guan L X, Pan J S, Wang S J 2015 Appl. Phys. Lett. 106 081602

    [30]

    Zhang J, Huang L, Lu Z, Jin Z, Wang X 2016 J. Alloys Compd. 688 840

    [31]

    Yang X, Huang H, Jin B, Luo J, Zhou X 2016 RSC. Adv. 6 107075

    [32]

    Yuan Y J, Ye Z J, Lu H, Hu B, Li Y H, Chen D, Zhong J S, Yu Z T, Zou Z 2016 ACS Catal. 6 532

    [33]

    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W 2017 Appl. Catal. B: Environ. 201 119

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [36]

    Zhao S, Xue J, Kang W 2014 J. Chem. Phys. Lett. 595 35

    [37]

    Zhang J J, Gao B, Dong S 2016 Phys. Rev. B 93 155430

    [38]

    Shirley R, Kraft M, Inderwildi O R 2010 Phys. Rev. B 81 075111

    [39]

    Zhang J F, Zhou P, Liu J J, Yu J G 2014 Chem. Chem. Phys. 16 20382

    [40]

    Ataca C, Sahin H 2012 J. Phys. Chem. C 116 8983

    [41]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [42]

    Tahir M, Tahir B 2016 Appl. Surf. Sci. 377 244

  • [1]

    Kwon W W, Han H, Kim J H 2017 Energy 103 226

    [2]

    Rahmouni S, Negrou B, Settou N, Dominguez J, Gouareh A 2017 Energy 42 1383

    [3]

    Lewis N S, Nocera D G 2006 Science 103 15729

    [4]

    Fujishima A, Honda K 1972 Nature 238 37

    [5]

    Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K 2002 J. Am. Chem. Soc. 124 13547

    [6]

    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K 2005 J. Am. Chem. Soc. 127 8286

    [7]

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K 2006 Nature 440 295

    [8]

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M 2007 J. Phys. Chem. C 111 1042

    [9]

    Chen X, Mao S S 2007 Chem. Rev. 107 289

    [10]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [11]

    Yin S, Zhang Q, Saito F, Sato T 2003 Chem. Lett. 32 358

    [12]

    Ohtani B, Handa J I, Nishimoto S I, Kagiya T 1985 Chem. Phys. Lett. 120 292

    [13]

    Elsellami L, Dappozze F, Fessi N, Houas A, Guillard C 2018 Process. Saf. Environ. 113 109

    [14]

    Jung H S, Kim H 2009 Electron. Mater. Lett. 5 73

    [15]

    Tehare K K, Bhande S S, Mutkule S U, Stadler F J, Ao J P, Mane R S, Liu X 2017 J. Alloys Compd. 704 187

    [16]

    Meng A, Zhang J, Xu D, Cheng B, Yu J 2016 Appl. Catal. B 198 286

    [17]

    Cheng X, Yu X, Xing Z, Yang L 2016 Arab. J. Chem. 9 1706

    [18]

    Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q 2016 Appl. Catal. B: Environ. 195 69

    [19]

    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J 2017 Appl. Catal. B: Environ. 204 324

    [20]

    Zhang W, Yin J, Tang X, Zhang P, Ding Y 2017 Physica 85 259

    [21]

    Brindha A, Sivakumar T 2017 J. Photoch. Photobio. A: Chem. 340 14

    [22]

    Ren D, Li H, Cheng X 2015 Solid. State. Commun. 223 54

    [23]

    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J 2017 Ceram. Int. 43 973

    [24]

    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu S F 2016 Appl. Catal. B: Environ. 191 130

    [25]

    Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C, Miotello A 2015 Appl. Catal. B: Environ. 168 333

    [26]

    Sun L, Xian Z, Cheng X 2012 Langmuir 28 5882

    [27]

    Yang C T, Balakrishnan N, Bhethanabotla V R 2017 J. Phys. Chem. C 118 4702

    [28]

    He H, Lin J, Fu W, Wang X, Wang H 2016 Adv. Energy Mater. 6 1600464

    [29]

    Tao J G, Chai J W, Guan L X, Pan J S, Wang S J 2015 Appl. Phys. Lett. 106 081602

    [30]

    Zhang J, Huang L, Lu Z, Jin Z, Wang X 2016 J. Alloys Compd. 688 840

    [31]

    Yang X, Huang H, Jin B, Luo J, Zhou X 2016 RSC. Adv. 6 107075

    [32]

    Yuan Y J, Ye Z J, Lu H, Hu B, Li Y H, Chen D, Zhong J S, Yu Z T, Zou Z 2016 ACS Catal. 6 532

    [33]

    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W 2017 Appl. Catal. B: Environ. 201 119

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [36]

    Zhao S, Xue J, Kang W 2014 J. Chem. Phys. Lett. 595 35

    [37]

    Zhang J J, Gao B, Dong S 2016 Phys. Rev. B 93 155430

    [38]

    Shirley R, Kraft M, Inderwildi O R 2010 Phys. Rev. B 81 075111

    [39]

    Zhang J F, Zhou P, Liu J J, Yu J G 2014 Chem. Chem. Phys. 16 20382

    [40]

    Ataca C, Sahin H 2012 J. Phys. Chem. C 116 8983

    [41]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [42]

    Tahir M, Tahir B 2016 Appl. Surf. Sci. 377 244

  • [1] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [2] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [4] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [5] Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Physica Sinica, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [6] Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping. Application of compressive sensing based on multimode fiber specklegram in optical image encryption. Acta Physica Sinica, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [7] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [9] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [10] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [11] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [12] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [13] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [14] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [15] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
  • Citation:
Metrics
  • Abstract views:  85
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2018
  • Accepted Date:  29 September 2018

Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study

  • Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11447030, 51572219), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2016JQ1038, 2015JM1018), the Science Foundation of Northwest University, China (Grant No. 14NW23), and the Double First-class University Construction Project of Northwest University, China.

Abstract: Anatase titanium dioxide (TiO2) has attracted much attention due to its excellent photocatalytic properties. However, the band gap of anatase TiO2 is 3.2 eV, which can absorb only about 4% of the ultraviolet light (λ < 400 nm). Molybdenum disulfide (MoS2) is a new layered two-dimensional compound semiconductor, and it has been widely studied for its preferably optical absorption and photocatalytic properties. Moreover, the high recombination rate of photoexcited electron-hole of monolayer MoS2 leads to low photocatalytic efficiency. In this work, based on Heyd-Scuseria-Ernzerhof (HSE06) hybrid density functional theory, the geometric structure, electronic structure, optical properties, charge transfer and effect of pressure on structure of Cu/N doped TiO2/MoS2 heterostructures are systematically studied. The interface interaction between anatase TiO2(101) surface and monolayer MoS2 shows that TiO2 and MoS2 form a van der Waals heterostructure. The defect formation energy is calculated to demonstrate that Cu@O&N@O is the most stable codoping site. The result of the density of states shows that the band gap of TiO2/MoS2 heterojunction is 1.38 eV, which is obviously smaller than that of the pure anatase TiO2(101) surface (2.90 eV). The band gap of Cu/N doped TiO2/MoS2 heterojunction obviously decreases, and an impurity band provided by Cu 3d orbitals appears in the forbidden band, which leads to the decrease of the photon excitation energy and the enhancement of the optical absorption capacity. The x-y planar averaged and three-dimensional charge density difference of Cu/N doped TiO2/MoS2 are also calculated. It is found that there are electrons' and holes' accumulation in the doped anatase TiO2(101) surface and the single layer MoS2, showing that the Cu/N doping can effectively reduce the recombination of the photoexcited electron hole pairs. Calculated optical absorption spectra show that Cu/N doped TiO2/MoS2 system has obvious improvement in the absorption of visible light. In addition, we calculate the geometrical, electronic and optical absorption spectra of TiO2/MoS2 heterojunction under different pressures. The results show that the appropriate increase of pressure can effectively improve the optical absorption properties of heterojunction and Cu/N doped TiO2/MoS2 heterojunction and TiO2/MoS2 heterojunction can effectively improve the optical properties of the material. These findings are helpful in understanding the photocatalytic mechanism and relevant experimental observations.

Reference (42)

Catalog

    /

    返回文章
    返回