Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study

Wang Guan-Shi Lin Yan-Ming Zhao Ya-Li Jiang Zhen-Yi Zhang Xiao-Dong

Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study

Wang Guan-Shi, Lin Yan-Ming, Zhao Ya-Li, Jiang Zhen-Yi, Zhang Xiao-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Anatase titanium dioxide (TiO2) has attracted much attention due to its excellent photocatalytic properties. However, the band gap of anatase TiO2 is 3.2 eV, which can absorb only about 4% of the ultraviolet light (λ < 400 nm). Molybdenum disulfide (MoS2) is a new layered two-dimensional compound semiconductor, and it has been widely studied for its preferably optical absorption and photocatalytic properties. Moreover, the high recombination rate of photoexcited electron-hole of monolayer MoS2 leads to low photocatalytic efficiency. In this work, based on Heyd-Scuseria-Ernzerhof (HSE06) hybrid density functional theory, the geometric structure, electronic structure, optical properties, charge transfer and effect of pressure on structure of Cu/N doped TiO2/MoS2 heterostructures are systematically studied. The interface interaction between anatase TiO2(101) surface and monolayer MoS2 shows that TiO2 and MoS2 form a van der Waals heterostructure. The defect formation energy is calculated to demonstrate that Cu@O&N@O is the most stable codoping site. The result of the density of states shows that the band gap of TiO2/MoS2 heterojunction is 1.38 eV, which is obviously smaller than that of the pure anatase TiO2(101) surface (2.90 eV). The band gap of Cu/N doped TiO2/MoS2 heterojunction obviously decreases, and an impurity band provided by Cu 3d orbitals appears in the forbidden band, which leads to the decrease of the photon excitation energy and the enhancement of the optical absorption capacity. The x-y planar averaged and three-dimensional charge density difference of Cu/N doped TiO2/MoS2 are also calculated. It is found that there are electrons' and holes' accumulation in the doped anatase TiO2(101) surface and the single layer MoS2, showing that the Cu/N doping can effectively reduce the recombination of the photoexcited electron hole pairs. Calculated optical absorption spectra show that Cu/N doped TiO2/MoS2 system has obvious improvement in the absorption of visible light. In addition, we calculate the geometrical, electronic and optical absorption spectra of TiO2/MoS2 heterojunction under different pressures. The results show that the appropriate increase of pressure can effectively improve the optical absorption properties of heterojunction and Cu/N doped TiO2/MoS2 heterojunction and TiO2/MoS2 heterojunction can effectively improve the optical properties of the material. These findings are helpful in understanding the photocatalytic mechanism and relevant experimental observations.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447030, 51572219), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2016JQ1038, 2015JM1018), the Science Foundation of Northwest University, China (Grant No. 14NW23), and the Double First-class University Construction Project of Northwest University, China.
    [1]

    Kwon W W, Han H, Kim J H 2017 Energy 103 226

    [2]

    Rahmouni S, Negrou B, Settou N, Dominguez J, Gouareh A 2017 Energy 42 1383

    [3]

    Lewis N S, Nocera D G 2006 Science 103 15729

    [4]

    Fujishima A, Honda K 1972 Nature 238 37

    [5]

    Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K 2002 J. Am. Chem. Soc. 124 13547

    [6]

    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K 2005 J. Am. Chem. Soc. 127 8286

    [7]

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K 2006 Nature 440 295

    [8]

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M 2007 J. Phys. Chem. C 111 1042

    [9]

    Chen X, Mao S S 2007 Chem. Rev. 107 289

    [10]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [11]

    Yin S, Zhang Q, Saito F, Sato T 2003 Chem. Lett. 32 358

    [12]

    Ohtani B, Handa J I, Nishimoto S I, Kagiya T 1985 Chem. Phys. Lett. 120 292

    [13]

    Elsellami L, Dappozze F, Fessi N, Houas A, Guillard C 2018 Process. Saf. Environ. 113 109

    [14]

    Jung H S, Kim H 2009 Electron. Mater. Lett. 5 73

    [15]

    Tehare K K, Bhande S S, Mutkule S U, Stadler F J, Ao J P, Mane R S, Liu X 2017 J. Alloys Compd. 704 187

    [16]

    Meng A, Zhang J, Xu D, Cheng B, Yu J 2016 Appl. Catal. B 198 286

    [17]

    Cheng X, Yu X, Xing Z, Yang L 2016 Arab. J. Chem. 9 1706

    [18]

    Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q 2016 Appl. Catal. B: Environ. 195 69

    [19]

    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J 2017 Appl. Catal. B: Environ. 204 324

    [20]

    Zhang W, Yin J, Tang X, Zhang P, Ding Y 2017 Physica 85 259

    [21]

    Brindha A, Sivakumar T 2017 J. Photoch. Photobio. A: Chem. 340 14

    [22]

    Ren D, Li H, Cheng X 2015 Solid. State. Commun. 223 54

    [23]

    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J 2017 Ceram. Int. 43 973

    [24]

    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu S F 2016 Appl. Catal. B: Environ. 191 130

    [25]

    Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C, Miotello A 2015 Appl. Catal. B: Environ. 168 333

    [26]

    Sun L, Xian Z, Cheng X 2012 Langmuir 28 5882

    [27]

    Yang C T, Balakrishnan N, Bhethanabotla V R 2017 J. Phys. Chem. C 118 4702

    [28]

    He H, Lin J, Fu W, Wang X, Wang H 2016 Adv. Energy Mater. 6 1600464

    [29]

    Tao J G, Chai J W, Guan L X, Pan J S, Wang S J 2015 Appl. Phys. Lett. 106 081602

    [30]

    Zhang J, Huang L, Lu Z, Jin Z, Wang X 2016 J. Alloys Compd. 688 840

    [31]

    Yang X, Huang H, Jin B, Luo J, Zhou X 2016 RSC. Adv. 6 107075

    [32]

    Yuan Y J, Ye Z J, Lu H, Hu B, Li Y H, Chen D, Zhong J S, Yu Z T, Zou Z 2016 ACS Catal. 6 532

    [33]

    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W 2017 Appl. Catal. B: Environ. 201 119

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [36]

    Zhao S, Xue J, Kang W 2014 J. Chem. Phys. Lett. 595 35

    [37]

    Zhang J J, Gao B, Dong S 2016 Phys. Rev. B 93 155430

    [38]

    Shirley R, Kraft M, Inderwildi O R 2010 Phys. Rev. B 81 075111

    [39]

    Zhang J F, Zhou P, Liu J J, Yu J G 2014 Chem. Chem. Phys. 16 20382

    [40]

    Ataca C, Sahin H 2012 J. Phys. Chem. C 116 8983

    [41]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [42]

    Tahir M, Tahir B 2016 Appl. Surf. Sci. 377 244

  • [1]

    Kwon W W, Han H, Kim J H 2017 Energy 103 226

    [2]

    Rahmouni S, Negrou B, Settou N, Dominguez J, Gouareh A 2017 Energy 42 1383

    [3]

    Lewis N S, Nocera D G 2006 Science 103 15729

    [4]

    Fujishima A, Honda K 1972 Nature 238 37

    [5]

    Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K 2002 J. Am. Chem. Soc. 124 13547

    [6]

    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K 2005 J. Am. Chem. Soc. 127 8286

    [7]

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K 2006 Nature 440 295

    [8]

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M 2007 J. Phys. Chem. C 111 1042

    [9]

    Chen X, Mao S S 2007 Chem. Rev. 107 289

    [10]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [11]

    Yin S, Zhang Q, Saito F, Sato T 2003 Chem. Lett. 32 358

    [12]

    Ohtani B, Handa J I, Nishimoto S I, Kagiya T 1985 Chem. Phys. Lett. 120 292

    [13]

    Elsellami L, Dappozze F, Fessi N, Houas A, Guillard C 2018 Process. Saf. Environ. 113 109

    [14]

    Jung H S, Kim H 2009 Electron. Mater. Lett. 5 73

    [15]

    Tehare K K, Bhande S S, Mutkule S U, Stadler F J, Ao J P, Mane R S, Liu X 2017 J. Alloys Compd. 704 187

    [16]

    Meng A, Zhang J, Xu D, Cheng B, Yu J 2016 Appl. Catal. B 198 286

    [17]

    Cheng X, Yu X, Xing Z, Yang L 2016 Arab. J. Chem. 9 1706

    [18]

    Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q 2016 Appl. Catal. B: Environ. 195 69

    [19]

    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J 2017 Appl. Catal. B: Environ. 204 324

    [20]

    Zhang W, Yin J, Tang X, Zhang P, Ding Y 2017 Physica 85 259

    [21]

    Brindha A, Sivakumar T 2017 J. Photoch. Photobio. A: Chem. 340 14

    [22]

    Ren D, Li H, Cheng X 2015 Solid. State. Commun. 223 54

    [23]

    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J 2017 Ceram. Int. 43 973

    [24]

    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu S F 2016 Appl. Catal. B: Environ. 191 130

    [25]

    Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C, Miotello A 2015 Appl. Catal. B: Environ. 168 333

    [26]

    Sun L, Xian Z, Cheng X 2012 Langmuir 28 5882

    [27]

    Yang C T, Balakrishnan N, Bhethanabotla V R 2017 J. Phys. Chem. C 118 4702

    [28]

    He H, Lin J, Fu W, Wang X, Wang H 2016 Adv. Energy Mater. 6 1600464

    [29]

    Tao J G, Chai J W, Guan L X, Pan J S, Wang S J 2015 Appl. Phys. Lett. 106 081602

    [30]

    Zhang J, Huang L, Lu Z, Jin Z, Wang X 2016 J. Alloys Compd. 688 840

    [31]

    Yang X, Huang H, Jin B, Luo J, Zhou X 2016 RSC. Adv. 6 107075

    [32]

    Yuan Y J, Ye Z J, Lu H, Hu B, Li Y H, Chen D, Zhong J S, Yu Z T, Zou Z 2016 ACS Catal. 6 532

    [33]

    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W 2017 Appl. Catal. B: Environ. 201 119

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [36]

    Zhao S, Xue J, Kang W 2014 J. Chem. Phys. Lett. 595 35

    [37]

    Zhang J J, Gao B, Dong S 2016 Phys. Rev. B 93 155430

    [38]

    Shirley R, Kraft M, Inderwildi O R 2010 Phys. Rev. B 81 075111

    [39]

    Zhang J F, Zhou P, Liu J J, Yu J G 2014 Chem. Chem. Phys. 16 20382

    [40]

    Ataca C, Sahin H 2012 J. Phys. Chem. C 116 8983

    [41]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639

    [42]

    Tahir M, Tahir B 2016 Appl. Surf. Sci. 377 244

  • [1] Guo Jian-Yun, Chen Jing-Zhong, Zheng Guang, He Kai-Hua. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [2] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [3] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [4] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [5] Zhou Xun, Linghu Rong-Feng, Shen Yi-Bin, Ding Ying-Chun, Duan Man-Yi, Zhu Wen-Jun, Xu Ming. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [6] Hu Zhi-Gang, Duan Man-Yi, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng, Zhou Xun, Xu Ming. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [7] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [8] Zhu Xue-Wen, Xu Li-Chun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan. N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study. Acta Physica Sinica, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [9] Xing Hai-Ying, Fan Guang-Han, He Miao, Zhang Yong, Zhou Tian-Ming, Zhao De-Gang. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [10] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [11] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [12] Li Chun-Xia, Dang Sui-Hu. Doped with Ag and Zn effects on electronic structure and optical properties of CdS. Acta Physica Sinica, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [13] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [14] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [15] Cheng Li, Wang De-Xing, Zhang Yang, Su Li-Ping, Chen Shu-Yan, Wang Xiao-Feng, Sun Peng, Yi Chong-Gui. Electronic structure and optical properties of Cu-O co-doped AlN. Acta Physica Sinica, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [16] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [17] Duan Man-Yi, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun, Xu Ming. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [18] Zhang Xiao-Chao, Zhao Li-Jun, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Electronic structures and optical properties of transition metals (Fe, Co, Ni, Zn) doped rutile TiO2. Acta Physica Sinica, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [19] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [20] Xu Da-Qing, Zhao Zi-Han, Li Pei-Xian, Wang Chao, Zhang Yan, Liu Shu-Lin, Tong Jun. First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN. Acta Physica Sinica, 2018, 67(8): 087501. doi: 10.7498/aps.67.20172504
  • Citation:
Metrics
  • Abstract views:  214
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2018
  • Accepted Date:  29 September 2018

Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study

  • Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11447030, 51572219), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2016JQ1038, 2015JM1018), the Science Foundation of Northwest University, China (Grant No. 14NW23), and the Double First-class University Construction Project of Northwest University, China.

Abstract: Anatase titanium dioxide (TiO2) has attracted much attention due to its excellent photocatalytic properties. However, the band gap of anatase TiO2 is 3.2 eV, which can absorb only about 4% of the ultraviolet light (λ < 400 nm). Molybdenum disulfide (MoS2) is a new layered two-dimensional compound semiconductor, and it has been widely studied for its preferably optical absorption and photocatalytic properties. Moreover, the high recombination rate of photoexcited electron-hole of monolayer MoS2 leads to low photocatalytic efficiency. In this work, based on Heyd-Scuseria-Ernzerhof (HSE06) hybrid density functional theory, the geometric structure, electronic structure, optical properties, charge transfer and effect of pressure on structure of Cu/N doped TiO2/MoS2 heterostructures are systematically studied. The interface interaction between anatase TiO2(101) surface and monolayer MoS2 shows that TiO2 and MoS2 form a van der Waals heterostructure. The defect formation energy is calculated to demonstrate that Cu@O&N@O is the most stable codoping site. The result of the density of states shows that the band gap of TiO2/MoS2 heterojunction is 1.38 eV, which is obviously smaller than that of the pure anatase TiO2(101) surface (2.90 eV). The band gap of Cu/N doped TiO2/MoS2 heterojunction obviously decreases, and an impurity band provided by Cu 3d orbitals appears in the forbidden band, which leads to the decrease of the photon excitation energy and the enhancement of the optical absorption capacity. The x-y planar averaged and three-dimensional charge density difference of Cu/N doped TiO2/MoS2 are also calculated. It is found that there are electrons' and holes' accumulation in the doped anatase TiO2(101) surface and the single layer MoS2, showing that the Cu/N doping can effectively reduce the recombination of the photoexcited electron hole pairs. Calculated optical absorption spectra show that Cu/N doped TiO2/MoS2 system has obvious improvement in the absorption of visible light. In addition, we calculate the geometrical, electronic and optical absorption spectra of TiO2/MoS2 heterojunction under different pressures. The results show that the appropriate increase of pressure can effectively improve the optical absorption properties of heterojunction and Cu/N doped TiO2/MoS2 heterojunction and TiO2/MoS2 heterojunction can effectively improve the optical properties of the material. These findings are helpful in understanding the photocatalytic mechanism and relevant experimental observations.

Reference (42)

Catalog

    /

    返回文章
    返回